Do you want to publish a course? Click here

Persistence of Non-Markovian Gaussian Stationary Processes in Discrete Time

88   0   0.0 ( 0 )
 Added by Markus Nyberg
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The persistence of a stochastic variable is the probability that it does not cross a given level during a fixed time interval. Although persistence is a simple concept to understand, it is in general hard to calculate. Here we consider zero mean Gaussian stationary processes in discrete time $n$. Few results are known for the persistence $P_0(n)$ in discrete time, except the large time behavior which is characterized by the nontrivial constant $theta$ through $P_0(n)sim theta^n$. Using a modified version of the Independent Interval Approximation (IIA) that we developed before, we are able to calculate $P_0(n)$ analytically in $z$-transform space in terms of the autocorrelation function $A(n)$. If $A(n)to0$ as $ntoinfty$, we extract $theta$ numerically, while if $A(n)=0$, for finite $n>N$, we find $theta$ exactly (within the IIA). We apply our results to three special cases: the nearest neighbor-correlated first order moving average process where $A(n)=0$ for $ n>1$, the double exponential-correlated second order autoregressive process where $A(n)=c_1lambda_1^n+c_2lambda_2^n$, and power law-correlated variables where $A(n)sim n^{-mu}$. Apart from the power-law case when $mu<5$, we find excellent agreement with simulations.



rate research

Read More

The persistence exponent theta for the global order parameter, M(t), of a system quenched from the disordered phase to its critical point describes the probability, p(t) sim t^{-theta}, that M(t) does not change sign in the time interval t following the quench. We calculate theta to O(epsilon^2) for model A of critical dynamics (and to order epsilon for model C) and show that at this order M(t) is a non-Markov process. Consequently, theta is a new exponent. The calculation is performed by expanding around a Markov process, using a simplified version of the perturbation theory recently introduced by Majumdar and Sire [Phys. Rev. Lett. _77_, 1420 (1996); cond-mat/9604151].
172 - Salvatore Miccich`e 2008
In this paper we give explicit examples of power-law correlated stationary Markovian processes y(t) where the stationary pdf shows tails which are gaussian or exponential. These processes are obtained by simply performing a coordinate transformation of a specific power-law correlated additive process x(t), already known in the literature, whose pdf shows power-law tails 1/x^a. We give analytical and numerical evidence that although the new processes (i) are Markovian and (ii) have gaussian or exponential tails their autocorrelation function still shows a power-law decay <y(t) y(t+T)>=1/T^b where b grows with a with a law which is compatible with b=a/2-c, where c is a numerical constant. When a<2(1+c) the process y(t), although Markovian, is long-range correlated. Our results help in clarifying that even in the context of Markovian processes long-range dependencies are not necessarily associated to the occurrence of extreme events. Moreover, our results can be relevant in the modeling of complex systems with long memory. In fact, we provide simple processes associated to Langevin equations thus showing that long-memory effects can be modeled in the context of continuous time stationary Markovian processes.
119 - E. Aydiner 2021
In this study, we analytically formulated the path integral representation of the conditional probabilities for non-Markovian kinetic processes in terms of the free energy of the thermodynamic system. We carry out analytically the time-fractional kinetic equations for these processes. Thus, in a simple way, we generalize path integral solutions of the Markovian to the non-Markovian cases. We conclude that these pedagogical results can be applied to some physical problems such as the deformed ion channels, internet networks and non-equilibrium phase transition problems.
115 - Baruch Meerson 2019
Employing the optimal fluctuation method (OFM), we study the large deviation function of long-time averages $(1/T)int_{-T/2}^{T/2} x^n(t) dt$, $n=1,2, dots$, of centered stationary Gaussian processes. These processes are correlated and, in general, non-Markovian. We show that the anomalous scaling with time of the large-deviation function, recently observed for $n>2$ for the particular case of the Ornstein-Uhlenbeck process, holds for a whole class of stationary Gaussian processes.
Efficient simulations of the dynamics of open systems is of wide importance for quantum science and tech-nology. Here, we introduce a generalization of the transfer-tensor, or discrete-time memory kernel, formalism to multi-time measurement scenarios. The transfer-tensor method sets out to compute the state of an open few-body quantum system at long times, given that only short-time system trajectories are available. Here, we showthat the transfer-tensor method can be extended to processes which include multiple interrogations (e.g. measurements) of the open system dynamics as it evolves, allowing us to propagate high order short-time correlation functions to later times, without further recourse to the underlying system-environment evolution. Our approach exploits the process-tensor description of open quantum processes to represent and propagate the dynamics in terms of an object from which any multi-time correlation can be extracted. As an illustration of the utility of the method, we study the build-up of system-environment correlations in the paradigmatic spin-boson model, and compute steady-state emission spectra, taking fully into account system-environment correlations present in the steady state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا