Do you want to publish a course? Click here

Hierarchical Novelty Detection for Visual Object Recognition

73   0   0.0 ( 0 )
 Added by Kibok Lee
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Deep neural networks have achieved impressive success in large-scale visual object recognition tasks with a predefined set of classes. However, recognizing objects of novel classes unseen during training still remains challenging. The problem of detecting such novel classes has been addressed in the literature, but most prior works have focused on providing simple binary or regressive decisions, e.g., the output would be known, novel, or corresponding confidence intervals. In this paper, we study more informative novelty detection schemes based on a hierarchical classification framework. For an object of a novel class, we aim for finding its closest super class in the hierarchical taxonomy of known classes. To this end, we propose two different approaches termed top-down and flatten methods, and their combination as well. The essential ingredients of our methods are confidence-calibrated classifiers, data relabeling, and the leave-one-out strategy for modeling novel classes under the hierarchical taxonomy. Furthermore, our method can generate a hierarchical embedding that leads to improved generalized zero-shot learning performance in combination with other commonly-used semantic embeddings.



rate research

Read More

Recently, a number of competitive methods have tackled unsupervised representation learning by maximising the mutual information between the representations produced from augmentations. The resulting representations are then invariant to stochastic augmentation strategies, and can be used for downstream tasks such as clustering or classification. Yet data augmentations preserve many properties of an image and so there is potential for a suboptimal choice of representation that relies on matching easy-to-find features in the data. We demonstrate that greedy or local methods of maximising mutual information (such as stochastic gradient optimisation) discover local optima of the mutual information criterion; the resulting representations are also less-ideally suited to complex downstream tasks. Earlier work has not specifically identified or addressed this issue. We introduce deep hierarchical object grouping (DHOG) that computes a number of distinct discrete representations of images in a hierarchical order, eventually generating representations that better optimise the mutual information objective. We also find that these representations align better with the downstream task of grouping into underlying object classes. We tested DHOG on unsupervised clustering, which is a natural downstream test as the target representation is a discrete labelling of the data. We achieved new state-of-the-art results on the three main benchmarks without any prefiltering or Sobel-edge detection that proved necessary for many previous methods to work. We obtain accuracy improvements of: 4.3% on CIFAR-10, 1.5% on CIFAR-100-20, and 7.2% on SVHN.
An interesting development in automatic visual recognition has been the emergence of tasks where it is not possible to assign objective labels to images, yet still feasible to collect annotations that reflect human judgements about them. Machine learning-based predictors for these tasks rely on supervised training that models the behavior of the annotators, i.e., what would the average persons judgement be for an image? A key open question for this type of work, especially for applications where inconsistency with human behavior can lead to ethical lapses, is how to evaluate the epistemic uncertainty of trained predictors, i.e., the uncertainty that comes from the predictors model. We propose a Bayesian framework for evaluating black box predictors in this regime, agnostic to the predictors internal structure. The framework specifies how to estimate the epistemic uncertainty that comes from the predictor with respect to human labels by approximating a conditional distribution and producing a credible interval for the predictions and their measures of performance. The framework is successfully applied to four image classification tasks that use subjective human judgements: facial beauty assessment, social attribute assignment, apparent age estimation, and ambiguous scene labeling.
We present a reinforcement learning approach for detecting objects within an image. Our approach performs a step-wise deformation of a bounding box with the goal of tightly framing the object. It uses a hierarchical tree-like representation of predefined region candidates, which the agent can zoom in on. This reduces the number of region candidates that must be evaluated so that the agent can afford to compute new feature maps before each step to enhance detection quality. We compare an approach that is based purely on zoom actions with one that is extended by a second refinement stage to fine-tune the bounding box after each zoom step. We also improve the fitting ability by allowing for different aspect ratios of the bounding box. Finally, we propose different reward functions to lead to a better guidance of the agent while following its search trajectories. Experiments indicate that each of these extensions leads to more correct detections. The best performing approach comprises a zoom stage and a refinement stage, uses aspect-ratio modifying actions and is trained using a combination of three different reward metrics.
This paper revisits human-object interaction (HOI) recognition at image level without using supervisions of object location and human pose. We name it detection-free HOI recognition, in contrast to the existing detection-supervised approaches which rely on object and keypoint detections to achieve state of the art. With our method, not only the detection supervision is evitable, but superior performance can be achieved by properly using image-text pre-training (such as CLIP) and the proposed Log-Sum-Exp Sign (LSE-Sign) loss function. Specifically, using text embeddings of class labels to initialize the linear classifier is essential for leveraging the CLIP pre-trained image encoder. In addition, LSE-Sign loss facilitates learning from multiple labels on an imbalanced dataset by normalizing gradients over all classes in a softmax format. Surprisingly, our detection-free solution achieves 60.5 mAP on the HICO dataset, outperforming the detection-supervised state of the art by 13.4 mAP
This paper introduces an agent-centric approach to handle novelty in the visual recognition domain of handwriting recognition (HWR). An ideal transcription agent would rival or surpass human perception, being able to recognize known and new characters in an image, and detect any stylistic changes that may occur within or across documents. A key confound is the presence of novelty, which has continued to stymie even the best machine learning-based algorithms for these tasks. In handwritten documents, novelty can be a change in writer, character attributes, writing attributes, or overall document appearance, among other things. Instead of looking at each aspect independently, we suggest that an integrated agent that can process known characters and novelties simultaneously is a better strategy. This paper formalizes the domain of handwriting recognition with novelty, describes a baseline agent, introduces an evaluation protocol with benchmark data, and provides experimentation to set the state-of-the-art. Results show feasibility for the agent-centric approach, but more work is needed to approach human-levels of reading ability, giving the HWR community a formal basis to build upon as they solve this challenging problem.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا