Do you want to publish a course? Click here

Maximal Ferrers Diagram Codes: Constructions and Genericity Considerations

385   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

This paper investigates the construction of rank-metric codes with specified Ferrers diagram shapes. These codes play a role in the multilevel construction for subspace codes. A conjecture from 2009 provides an upper bound for the dimension of a rank-metric code with given specified Ferrers diagram shape and rank distance. While the conjecture in its generality is wide open, several cases have been established in the literature. This paper contributes further cases of Ferrers diagrams and ranks for which the conjecture holds true. In addition, the proportion of maximal Ferrers diagram codes within the space of all rank-metric codes with the same shape and dimension is investigated. Special attention is being paid to MRD codes. It is shown that for growing field size the limiting proportion depends highly on the Ferrers diagram. For instance, for $[mtimes 2]$-MRD codes with rank~$2$ this limiting proportion is close to $1/e$.



rate research

Read More

268 - Shuangqing Liu , Yanxun Chang , 2018
Optimal rank-metric codes in Ferrers diagrams can be used to construct good subspace codes. Such codes consist of matrices having zeros at certain fixed positions. This paper generalizes the known constructions for Ferrers diagram rank-metric (FDRM) codes. Via a criteria for linear maximum rank distance (MRD) codes, an explicit construction for a class of systematic MRD codes is presented, which is used to produce new optimal FDRM codes. By exploring subcodes of Gabidulin codes, if each of the rightmost $delta-1$ columns in Ferrers diagram $cal F$ has at least $n-r$ dots, where $r$ is taken in a range, then the conditions that an FDRM code in $cal F$ is optimal are established. The known combining constructions for FDRM code are generalized by introducing the concept of proper combinations of Ferrers diagrams.
We derive simplified sphere-packing and Gilbert--Varshamov bounds for codes in the sum-rank metric, which can be computed more efficiently than previous ones. They give rise to asymptotic bounds that cover the asymptotic setting that has not yet been considered in the literature: families of sum-rank-metric codes whose block size grows in the code length. We also provide two genericity results: we show that random linear codes achieve almost the sum-rank-metric Gilbert--Varshamov bound with high probability. Furthermore, we derive bounds on the probability that a random linear code attains the sum-rank-metric Singleton bound, showing that for large enough extension fields, almost all linear codes achieve it.
Maximum distance separable (MDS) codes are very important in both theory and practice. There is a classical construction of a family of $[2^m+1, 2u-1, 2^m-2u+3]$ MDS codes for $1 leq u leq 2^{m-1}$, which are cyclic, reversible and BCH codes over $mathrm{GF}(2^m)$. The objective of this paper is to study the quaternary subfield subcodes and quaternary subfield codes of a subfamily of the MDS codes for even $m$. A family of quaternary cyclic codes is obtained. These quaternary codes are distance-optimal in some cases and very good in general. Furthermore, infinite families of $3$-designs from these quaternary codes are presented.
Four constructions for Ferrers diagram rank-metric (FDRM) codes are presented. The first one makes use of a characterization on generator matrices of a class of systematic maximum rank distance codes. By introducing restricted Gabidulin codes, the second construction is presented, which unifies many known constructions for FDRM codes. The third and fourth constructions are based on two different ways to represent elements of a finite field $mathbb F_{q^m}$ (vector representation and matrix representation). Each of these constructions produces optimal codes with different diagrams and parameters.
We study orbit codes in the field extension ${mathbb F}_{q^n}$. First we show that the automorphism group of a cyclic orbit code is contained in the normalizer of the Singer subgroup if the orbit is generated by a subspace that is not contained in a proper subfield of ${mathbb F}_{q^n}$. We then generalize to orbits under the normalizer of the Singer subgroup. In that situation some exceptional cases arise and some open cases remain. Finally we characterize linear isometries between such codes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا