No Arabic abstract
In many environments only a tiny subset of all states yield high reward. In these cases, few of the interactions with the environment provide a relevant learning signal. Hence, we may want to preferentially train on those high-reward states and the probable trajectories leading to them. To this end, we advocate for the use of a backtracking model that predicts the preceding states that terminate at a given high-reward state. We can train a model which, starting from a high value state (or one that is estimated to have high value), predicts and sample for which the (state, action)-tuples may have led to that high value state. These traces of (state, action) pairs, which we refer to as Recall Traces, sampled from this backtracking model starting from a high value state, are informative as they terminate in good states, and hence we can use these traces to improve a policy. We provide a variational interpretation for this idea and a practical algorithm in which the backtracking model samples from an approximate posterior distribution over trajectories which lead to large rewards. Our method improves the sample efficiency of both on- and off-policy RL algorithms across several environments and tasks.
In this paper, we present a Bayesian view on model-based reinforcement learning. We use expert knowledge to impose structure on the transition model and present an efficient learning scheme based on variational inference. This scheme is applied to a heteroskedastic and bimodal benchmark problem on which we compare our results to NFQ and show how our approach yields human-interpretable insight about the underlying dynamics while also increasing data-efficiency.
Despite the wealth of research into provably efficient reinforcement learning algorithms, most works focus on tabular representation and thus struggle to handle exponentially or infinitely large state-action spaces. In this paper, we consider episodic reinforcement learning with a continuous state-action space which is assumed to be equipped with a natural metric that characterizes the proximity between different states and actions. We propose ZoomRL, an online algorithm that leverages ideas from continuous bandits to learn an adaptive discretization of the joint space by zooming in more promising and frequently visited regions while carefully balancing the exploitation-exploration trade-off. We show that ZoomRL achieves a worst-case regret $tilde{O}(H^{frac{5}{2}} K^{frac{d+1}{d+2}})$ where $H$ is the planning horizon, $K$ is the number of episodes and $d$ is the covering dimension of the space with respect to the metric. Moreover, our algorithm enjoys improved metric-dependent guarantees that reflect the geometry of the underlying space. Finally, we show that our algorithm is robust to small misspecification errors.
We propose Generative Predecessor Models for Imitation Learning (GPRIL), a novel imitation learning algorithm that matches the state-action distribution to the distribution observed in expert demonstrations, using generative models to reason probabilistically about alternative histories of demonstrated states. We show that this approach allows an agent to learn robust policies using only a small number of expert demonstrations and self-supervised interactions with the environment. We derive this approach from first principles and compare it empirically to a state-of-the-art imitation learning method, showing that it outperforms or matches its performance on two simulated robot manipulation tasks and demonstrate significantly higher sample efficiency by applying the algorithm on a real robot.
Sample inefficiency of deep reinforcement learning methods is a major obstacle for their use in real-world applications. In this work, we show how human demonstrations can improve final performance of agents on the Minecraft minigame ObtainDiamond with only 8M frames of environment interaction. We propose a training procedure where policy networks are first trained on human data and later fine-tuned by reinforcement learning. Using a policy exploitation mechanism, experience replay and an additional loss against catastrophic forgetting, our best agent was able to achieve a mean score of 48. Our proposed solution placed 3rd in the NeurIPS MineRL Competition for Sample-Efficient Reinforcement Learning.
In real-world applications of reinforcement learning (RL), noise from inherent stochasticity of environments is inevitable. However, current policy evaluation algorithms, which plays a key role in many RL algorithms, are either prone to noise or inefficient. To solve this issue, we introduce a novel policy evaluation algorithm, which we call Gap-increasing RetrAce Policy Evaluation (GRAPE). It leverages two recent ideas: (1) gap-increasing value update operators in advantage learning for noise-tolerance and (2) off-policy eligibility trace in Retrace algorithm for efficient learning. We provide detailed theoretical analysis of the new algorithm that shows its efficiency and noise-tolerance inherited from Retrace and advantage learning. Furthermore, our analysis shows that GRAPEs learning is significantly efficient than that of a simple learning-rate-based approach while keeping the same level of noise-tolerance. We applied GRAPE to control problems and obtained experimental results supporting our theoretical analysis.