Do you want to publish a course? Click here

Upgoing ANITA events as evidence of the CPT symmetric universe

52   0   0.0 ( 0 )
 Added by Luis Anchordoqui
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explain the two upgoing ultra-high energy shower events observed by ANITA as arising from the decay in the Earths interior of the quasi-stable dark matter candidate in the CPT symmetric universe. The dark matter particle is a 480 PeV right-handed neutrino that decays into a Higgs boson and a light Majorana neutrino. The latter interacts in the Earths crust to produce a tau lepton that in turn initiates an atmospheric upgoing shower. The fact that both events emerge at the same angle from the Antarctic ice-cap suggests an atypical dark matter density distribution in the Earth.



rate research

Read More

The ANITA experiment has registered two anomalous events that can be interpreted as $ u_tau$ or $bar{ u}_tau$ with a very high energy of $mathcal{O}(0.6)$~EeV emerging from deep inside the Earth. At such high energies, the Earth is opaque to neutrinos so the emergence of these neutrinos at such large zenith angles is a mystery. In our paper, we present a model that explains the two anomalous events through a $L_e -L_tau$ gauge interaction involving two new Weyl fermions charged under the new gauge symmetry. We find that, as a bonus of the model, the lighter Weyl fermion can be a dark matter component. We discuss how the ANITA observation can be reconciled with the IceCube and Auger upper bounds. We also demonstrate how this model can be tested in future by collider experiments.
CPT violation has the potential to explain all three existing neutrino anomalies without enlarging the neutrino sector. CPT violation in the Dirac mass terms of the three neutrino flavors preserves Lorentz invariance, but generates independent masses for neutrinos and antineutrinos. This specific signature is strongly motivated by braneworld scenarios with extra dimensions, where neutrinos are the natural messengers for Standard Model physics of CPT violation in the bulk. A simple model of maximal CPT violation is sufficient to explain the exisiting neutrino data quite neatly, while making dramatic predictions for the upcoming KamLAND and MiniBooNE experiments. Furthermore we obtain a promising new mechanism for baryogenesis.
Lorentz invariance plays a fundamental role in modern physics. However, tiny violations of the Lorentz invariance may arise in some candidate quantum gravity theories. Prominent signatures of the gravitational Lorentz invariance violation (gLIV) include anisotropy, dispersion, and birefringence in the dispersion relation of gravitational waves (GWs). Using a total of 50 GW events in the GW transient catalogs GWTC-1 and GWTC-2, we perform an analysis on the anisotropic birefringence phenomenon. The use of multiple events allows us to completely break the degeneracy among gLIV coefficients and globally constrain the coefficient space. Compared to previous results at mass dimensions 5 and 6 for the Lorentz-violating operators, we tighten the global limits of 34 coefficients by factors ranging from $2$ to $7$.
The ANITA balloon experiment was designed to detect radio signals initiated by neutrinos and cosmic ray air showers. These signals are typically discriminated by the polarization and phase
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا