Do you want to publish a course? Click here

Predicting Future Instance Segmentation by Forecasting Convolutional Features

80   0   0.0 ( 0 )
 Added by Pauline Luc
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Anticipating future events is an important prerequisite towards intelligent behavior. Video forecasting has been studied as a proxy task towards this goal. Recent work has shown that to predict semantic segmentation of future frames, forecasting at the semantic level is more effective than forecasting RGB frames and then segmenting these. In this paper we consider the more challenging problem of future instance segmentation, which additionally segments out individual objects. To deal with a varying number of output labels per image, we develop a predictive model in the space of fixed-sized convolutional features of the Mask R-CNN instance segmentation model. We apply the detection head of Mask R-CNN on the predicted features to produce the instance segmentation of future frames. Experiments show that this approach significantly improves over strong baselines based on optical flow and repurposed instance segmentation architectures.



rate research

Read More

The ability to predict and therefore to anticipate the future is an important attribute of intelligence. It is also of utmost importance in real-time systems, e.g. in robotics or autonomous driving, which depend on visual scene understanding for decision making. While prediction of the raw RGB pixel values in future video frames has been studied in previous work, here we introduce the novel task of predicting semantic segmentations of future frames. Given a sequence of video frames, our goal is to predict segmentation maps of not yet observed video frames that lie up to a second or further in the future. We develop an autoregressive convolutional neural network that learns to iteratively generate multiple frames. Our results on the Cityscapes dataset show that directly predicting future segmentations is substantially better than predicting and then segmenting future RGB frames. Prediction results up to half a second in the future are visually convincing and are much more accurate than those of a baseline based on warping semantic segmentations using optical flow.
Recently, learning-based image synthesis has enabled to generate high-resolution images, either applying popular adversarial training or a powerful perceptual loss. However, it remains challenging to successfully leverage synthetic data for improving semantic segmentation with additional synthetic images. Therefore, we suggest to generate intermediate convolutional features and propose the first synthesis approach that is catered to such intermediate convolutional features. This allows us to generate new features from label masks and include them successfully into the training procedure in order to improve the performance of semantic segmentation. Experimental results and analysis on two challenging datasets Cityscapes and ADE20K show that our generated feature improves performance on segmentation tasks.
116 - Gang Zhang , Xin Lu , Jingru Tan 2021
The two-stage methods for instance segmentation, e.g. Mask R-CNN, have achieved excellent performance recently. However, the segmented masks are still very coarse due to the downsampling operations in both the feature pyramid and the instance-wise pooling process, especially for large objects. In this work, we propose a new method called RefineMask for high-quality instance segmentation of objects and scenes, which incorporates fine-grained features during the instance-wise segmenting process in a multi-stage manner. Through fusing more detailed information stage by stage, RefineMask is able to refine high-quality masks consistently. RefineMask succeeds in segmenting hard cases such as bent parts of objects that are over-smoothed by most previous methods and outputs accurate boundaries. Without bells and whistles, RefineMask yields significant gains of 2.6, 3.4, 3.8 AP over Mask R-CNN on COCO, LVIS, and Cityscapes benchmarks respectively at a small amount of additional computational cost. Furthermore, our single-model result outperforms the winner of the LVIS Challenge 2020 by 1.3 points on the LVIS test-dev set and establishes a new state-of-the-art. Code will be available at https://github.com/zhanggang001/RefineMask.
We present a weakly supervised instance segmentation algorithm based on deep community learning with multiple tasks. This task is formulated as a combination of weakly supervised object detection and semantic segmentation, where individual objects of the same class are identified and segmented separately. We address this problem by designing a unified deep neural network architecture, which has a positive feedback loop of object detection with bounding box regression, instance mask generation, instance segmentation, and feature extraction. Each component of the network makes active interactions with others to improve accuracy, and the end-to-end trainability of our model makes our results more robust and reproducible. The proposed algorithm achieves state-of-the-art performance in the weakly supervised setting without any additional training such as Fast R-CNN and Mask R-CNN on the standard benchmark dataset. The implementation of our algorithm is available on the project webpage: https://cv.snu.ac.kr/research/WSIS_CL.
80 - Yan Xu , Yang Li , Mingyuan Liu 2016
In this paper, we propose a new image instance segmentation method that segments individual glands (instances) in colon histology images. This is a task called instance segmentation that has recently become increasingly important. The problem is challenging since not only do the glands need to be segmented from the complex background, they are also required to be individually identified. Here we leverage the idea of image-to-image prediction in recent deep learning by building a framework that automatically exploits and fuses complex multichannel information, regional and boundary patterns, with side supervision (deep supervision on side responses) in gland histology images. Our proposed system, deep multichannel side supervision (DMCS), alleviates heavy feature design due to the use of convolutional neural networks guided by side supervision. Compared to methods reported in the 2015 MICCAI Gland Segmentation Challenge, we observe state-of-the-art results based on a number of evaluation metrics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا