We study the band topology and the associated linking structure of topological semimetals with nodal lines carrying $Z_{2}$ monopole charges, which can be realized in three-dimensional systems invariant under the combination of inversion $P$ and time reversal $T$ when spin-orbit coupling is negligible. In contrast to the well-known $PT$-symmetric nodal lines protected only by $pi$ Berry phase in which a single nodal line can exist, the nodal lines with $Z_{2}$ monopole charges should always exist in pairs. We show that a pair of nodal lines with $Z_{2}$ monopole charges is created by a {it double band inversion} (DBI) process, and that the resulting nodal lines are always {it linked by another nodal line} formed between the two topmost occupied bands. It is shown that both the linking structure and the $Z_{2}$ monopole charge are the manifestation of the nontrivial band topology characterized by the {it second Stiefel-Whitney class}, which can be read off from the Wilson loop spectrum. We show that the second Stiefel-Whitney class can serve as a well-defined topological invariant of a $PT$-invariant two-dimensional (2D) insulator in the absence of Berry phase. Based on this, we propose that pair creation and annihilation of nodal lines with $Z_{2}$ monopole charges can mediate a topological phase transition between a normal insulator and a three-dimensional weak Stiefel-Whitney insulator (3D weak SWI). Moreover, using first-principles calculations, we predict ABC-stacked graphdiyne as a nodal line semimetal (NLSM) with $Z_{2}$ monopole charges having the linking structure. Finally, we develop a formula for computing the second Stiefel-Whitney class based on parity eigenvalues at inversion invariant momenta, which is used to prove the quantized bulk magnetoelectric response of NLSMs with $Z_2$ monopole charges under a $T$-breaking perturbation.