No Arabic abstract
The role of the sublimation of the compound and of the evaporation of the constituents from the gold nanoparticle during the growth of semiconductor nanowires is exemplified with CdTe-ZnTe heterostructures. Operating close to the upper temperature limit strongly reduces the amount of Cd present in the gold nanoparticle and the density of adatoms on the nanowire sidewalls. As a result, the growth rate is small and strongly temperature dependent, but a good control of the growth conditions allows the incorporation of quantum dots in nanowires with sharp interfaces and adjustable shape, and it minimizes the radial growth and the subsequent formation of additional CdTe clusters on the nanowire sidewalls, as confirmed by photoluminescence. Uncapped CdTe segments dissolve into the gold nanoparticle when interrupting the flux, giving rise to a bulb-like (pendant-droplet) shape attributed to the Kirkendall effect.
We show that two major carrier excitation mechanisms are present in II-VI self-assembled quantum dots. The first one is related to direct excited state - ground state transition. It manifests itself by the presence of sharp and intense lines in the excitation spectrum measured from single quantum dots. Apart from these lines, we also observe up to four much broader excitation lines. The energy spacing between these lines indicates that they are associated with absorption related to longitudinal optical phonons. By analyzing resonantly excited photoluminescence spectra, we are able to separate the contributions from these two mechanisms. In the case of CdTe dots, the excited state - ground state relaxation is important for all dots in ensemble, while phonon - assisted processes are dominant for the dots with smaller lateral size.
Using micro- and nano-scale resonantly excited PL and PLE, we study the excitonic structure of CdSe/ZnSe and CdTe/ZnTe self assembled quantum dots (SAQD). Strong resonantly enhanced PL is seen at one to four optic phonon energies below the laser excitation energy. The maximum enhancement is not just one phonon energy above the peak energy distribution of QDs, but rather is 50 meV (for CdSe dots) or 100 meV (for CdTe) above the peak distribution. We interpret this unusual result as from double resonances associated with excited state to ground state energies being commensurate with LO phonons. Such a situation appears to occur only for the high-energy quantum dots.
We demonstrate radio-frequency tuning of the energy of individual CdTe/ZnTe quantum dots (QDs) by Surface Acoustic Waves (SAWs). Despite the very weak piezoelectric coefficient of ZnTe, SAW in the GHz range can be launched on a ZnTe surface using interdigitated transducers deposited on a c-axis oriented ZnO layer grown on ZnTe containing CdTe QDs. The photoluminescence (PL) of individual QDs is used as a nanometer-scale sensor of the acoustic strain field. The energy of QDs is modulated by SAW in the GHz range and leads to characteristic broadening of time-integrated PL spectra. The dynamic modulation of the QD PL energy can also be detected in the time domain using phase-locked time domain spectroscopy. This technique is in particular used for monitoring complex local acoustic fields resulting from the superposition of two or more SAW pulses in a cavity. Under magnetic field, the dynamic spectral tuning of a single QD by SAW can be used to generate single photons with alternating circular polarization controlled in the GHz range.
We study the exciton spin relaxation in CdTe self-assembled quantum dots by using polarized photoluminescence spectroscopy in magnetic field. The experiments on single CdTe quantum dots and on large quantum dot ensembles show that by combining phonon-assisted absorption with circularly polarized resonant excitation the spin-polarized excitons are photo-excited directly into the ground states of quantum dots. We find that for single symmetric quantum dots at B=0 T, where the exciton levels are degenerate, the spins randomize very rapidly, so that no net spin polarization is observed. In contrast, when this degeneracy is lifted by applying external magnetic field, optically created spin-polarized excitons maintain their polarization on a time scale much longer than the exciton recombination time. We also observe that the exciton spin polarization is conserved when the splitting between exciton states is caused by quantum dot shape asymmetry. Similar behavior is found in a large ensemble of CdTe quantum dots. These results show that while exciton spins scatter rapidly between degenerate states, the spin relaxation time increases by orders of magnitude as the exciton spin states in a quantum dot become non-degenerate. Finally, due to strong electronic confinement in CdTe quantum dots, the large spin polarization of excitons shows no dependence on the number of phonons emitted between the virtual state and the exciton ground state during the excitation.
We present results on the growth of CdTe-HgTe core-shell nanowires, a realization of a quasi one-dimensional heterostructure of the topological insulator HgTe. The growth is a two step process consisting of the growth of single crystalline zinc blende CdTe nanowires with the vapor-liquid-solid method and the overgrowth of these wires with HgTe such that a closed shell is formed around the CdTe core structure. The CdTe wire growth is monitored by RHEED allowing us to infer information on the crystal properties from the electron diffraction pattern. This information is used to find and control the optimal growth temperature. High quality single crystal CdTe nanowires grow with a preferred orientation. For the growth of the conductive HgTe shell structure we find that the supplied Hg:Te ratio is the crucial parameter to facilitate growth on all surface facets.