Do you want to publish a course? Click here

A catalog of polychromatic bulge-disk decompositions of ~ 17.600 galaxies in CANDELS

84   0   0.0 ( 0 )
 Added by Paola Dimauro Dr
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Understanding how bulges grow in galaxies is critical step towards unveiling the link between galaxy morphology and star-formation. To do so, it is necessary to decompose large sample of galaxies at different epochs into their main components (bulges and disks). This is particularly challenging, especially at high redshifts, where galaxies are poorly resolved. This work presents a catalog of bulge-disk decompositions of the surface brightness profiles of ~17.600 H-band selected galaxies in the CANDELS fields (F160W<23, 0<z<2) in 4 to 7 filters covering a spectral range of 430-1600nm. This is the largest available catalog of this kind up to z = 2. By using a novel approach based on deep-learning to select the best model to fit, we manage to control systematics arising from wrong model selection and obtain less contaminated samples than previous works. We show that the derived structural properties are within $sim10-20%$ of random uncertainties. We then fit stellar population models to the decomposed SEDs (Spectral Energy Distribution) of bulges and disks and derive stellar masses (and stellar mass bulge-to-total ratios) as well as rest-frame colors (U,V,J) for bulges and disks separately. All data products are publicly released with this paper and through the web page https://lerma.obspm.fr/huertas/form_CANDELS and will be used for scientific analysis in forthcoming works.



rate research

Read More

163 - C. N. Lackner , J. E. Gunn 2012
We present a set of bulge-disk decompositions for a sample of 71,825 SDSS main-sample galaxies in the redshift range 0.003<z<0.05. We have fit each galaxy with either a de Vaucouleurs (classical) or an exponential (pseudo-) bulge and an exponential disk. Two dimensional Sersic fits are performed when the 2-component fits are not statistically significant or when the fits are poor, even in the presence of high signal-to-noise. We study the robustness of our 2-component fits by studying a bright subsample of galaxies and we study the systematics of these fits with decreasing resolution and S/N. Only 30% of our sample have been fit with two-component fits in which both components are non-zero. The g-r and g-i colours of each component for the two-component models are determined using linear templates derived from the r-band model. We attempt a physical classification of types of fits into disk galaxies, pseudo-bulges, classical bulges, and ellipticals. Our classification of galaxies agrees well with previous large B+D decomposed samples. Using our galaxy classifications, we find that Petrosian concentration is a good indicator of B/T, while overall Sersic index is not. Additionally, we find that the majority of green valley galaxies are bulge+disk galaxies. Furthermore, in the transition from green to red B+D galaxies, the total galaxy colour is most strongly correlated with the disk colour.
We present the results of a new and improved study of the morphological and spectral evolution of massive galaxies over the redshift range 1<z<3. Our analysis is based on a bulge-disk decomposition of 396 galaxies with Mstar>10^11 Msolar from the CANDELS WFC3/IR imaging within the COSMOS and UKIDSS UDS survey fields. We find that, by modelling the H(160) image of each galaxy with a combination of a de Vaucouleurs bulge (Sersic index n=4) and an exponential disk (n=1), we can then lock all derived morphological parameters for the bulge and disk components, and successfully reproduce the shorter-wavelength J(125), i(814), v(606) HST images simply by floating the magnitudes of the two components. This then yields sub-divided 4-band HST photometry for the bulge and disk components which, with no additional priors, is well described by spectrophotometric models of galaxy evolution. Armed with this information we are able to properly determine the masses and star-formation rates for the bulge and disk components, and find that: i) from z=3 to z=1 the galaxies move from disk-dominated to increasingly bulge-dominated, but very few galaxies are pure bulges/ellipticals by z=1; ii) while most passive galaxies are bulge-dominated, and most star-forming galaxies disk-dominated, 18+/-5% of passive galaxies are disk-dominated, and 11+/-3% of star-forming galaxies are bulge-dominated, a result which needs to be explained by any model purporting to connect star-formation quenching with morphological transformations; iii) there exists a small but significant population of pure passive disks, which are generally flatter than their star-forming counterparts (whose axial ratio distribution peaks at b/a~0.7); iv) flatter/larger disks re-emerge at the highest star-formation rates, consistent with recent studies of sub-mm galaxies, and with the concept of a maximum surface-density for star-formation activity.
We have constructed a mass-selected sample of Mstar>10^11Msolar galaxies at 1<z<3 in the CANDELS UDS and COSMOS fields and have decomposed these systems into their separate bulge and disk components according to their H(160)-band morphologies. By extending this analysis to multiple bands we have been able to conduct individual bulge and disk component SED fitting which has provided us with stellar-mass and star-formation rate estimates for the separate bulge and disk components. These have been combined with size measurements to explore the evolution of these massive high-redshift galaxies. By utilising the new decomposed stellar-mass estimates, we confirm that the bulge components display a stronger size evolution than the disks. This can be seen from both the fraction of bulge components which lie below the local relation and the median sizes of the bulge components, where the bulges are a median factor of 2.93+/-0.32 times smaller than similarly massive local galaxies at 1<z<2 and 3.41+/-0.58 smaller at 2<z<3; for the disks the corresponding factors are 1.65+/-0.14 and 1.99+/-0.25. Moreover, by splitting our sample into the passive and star-forming bulge and disk sub-populations and examining their sizes as a fraction of their present-day counter-parts, we find that the star-forming and passive bulges are equally compact, star-forming disks are larger, while the passive disks have intermediate sizes. This trend is not evident when classifying galaxy morphology on the basis of single-Sersic fits and adopting the overall star-formation rates. Finally, by evolving the star-formation histories of the passive disks back to the redshifts when the passive disks were last active, we show that the passive and star-forming disks have consistent sizes at the relevant epoch. These trends need to be reproduced by any mechanisms which attempt to explain the morphological evolution of galaxies.
The formation and evolution of disk-dominated galaxies is difficult to explain, yet these objects exist. We therefore embarked on a study aimed at a better understanding of these enigmatic objects. We used data from the SDSS DR1 in order to identify edge-on galaxies with disks in a uniform, reproducible, automated fashion. We identified 3169 edge-on disk galaxies, which we subdivided into disk galaxies with bulge, intermediate types, and simple disk galaxies without any obvious bulge component. We subdivided these types further into subclasses: Sa(f), Sb(f), Sc(f), Scd(f), Sd(f), Irr(f), where the (f) indicates that these galaxies are seen edge-on. A number of incompleteness effects affect our catalog, but it contains almost a factor of four more bulgeless galaxies with prominent simple disks (flat galaxies) within the area covered here than previous optical catalogs, which were based on the visual selection from photographic plates. We find that approximately 15% of the edge-on disk galaxies in our catalog are flat galaxies, demonstrating that these galaxies are fairly common, especially among intermediate-mass star-forming galaxies. Bulgeless disks account for roughly one third of our galaxies when also puffy disks and edge-on irregulars are included.(Abridged)
We present the results from a study of the morphologies of moderate luminosity X-ray selected AGN host galaxies in comparison to a carefully mass-matched control sample at 0.5 < z < 3 in the CANDELS GOODS-S field. We apply a multi-wavelength morphological decomposition analysis to these two samples and report on the differences between the morphologies as fitted from single Sersic and multiple Sersic models, and models which include an additional nuclear point-source component. Thus, we are able to compare the widely adopted single Sersic fits from previous studies to the results from a full morphological decomposition, and address the issue of how biased the inferred properties of AGN hosts are by a potential nuclear contribution from the AGN itself. We find that the AGN hosts are mixed systems which have higher bulge fractions than the control sample in our highest redshift bins at the >99.7% confidence level, according to all model fits even those which adopt a point-source component. This serves to alleviate concerns that previous, purely single Sersic, analyses of AGN hosts could have been spuriously biased towards higher bulge fractions. This dataset allows us to further probe the physical nature of these point-source components; we find no strong correlation between the point-source component and AGN activity, and that these point-source components are best modelled physically by nuclear starbursts. Our analysis of the bulge and disk fractions of these AGN hosts in comparison to a mass-matched control sample reveals a similar morphological evolutionary track for both the active and non-active populations, providing further evidence in favour of a model where AGN activity is triggered by secular processes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا