Path Integral for Non-Paraxial Optics


Abstract in English

In this paper, we have constructed the Feynman path integral method for non-paraxial optics. This is done by using the mathematical analogy between a non-paraxial optical system and the generalized Schrodinger equation deformed by the existence a minimal measurable length. Using this analogy, we investigated the consequences of a minimal length in this optical system. This path integral has been used to obtain instanton solution for such a optical systems. Moreover, the Berry phase of this optical system has been investigated. These results may disclose a new way to use the path integral approach in optics. Furthermore, as such system with an intrinsic minimal length have been studied in quantum gravity, the ultra-focused optical pluses can be used as an optical analog of quantum gravity.

Download