In this paper, we review the concept of entropy in connection with the description of quantum unstable systems. We revise the conventional definition of entropy due to Boltzmann and extend it so as to include the presence of complex-energy states. After introducing a generalized basis of states which includes resonances, and working with amplitudes instead of probabilities, we~found an expression for the entropy which exhibits real and imaginary components. We discuss the meaning of the imaginary part of the entropy on the basis of the similarities existing between thermal and time evolutions.