Do you want to publish a course? Click here

Partial control of chaos: how to avoid undesirable behaviors with small controls in presence of noise

101   0   0.0 ( 0 )
 Added by Rub\\'en Cape\\'ans
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The presence of a nonattractive chaotic set, also called chaotic saddle, in phase space implies the appearance of a finite time kind of chaos that is known as transient chaos. For a given dynamical system in a certain region of phase space with transient chaos, trajectories eventually abandon the chaotic region escaping to an external attractor, if no external intervention is done on the system. In some situations, this attractor may involve an undesirable behavior, so the application of a control in the system is necessary to avoid it. Both, the nonattractive nature of transient chaos and eventually the presence of noise may hinder this task. Recently, a new method to control chaos called emph{partial control} has been developed. The method is based on the existence of a set, called the safe set, that allows to sustain transient chaos by only using a small amount of control. The surprising result is that the trajectories can be controlled by using an amount of control smaller than the amount of noise affecting it. We present here a broad survey of results of this control method applied to a wide variety of dynamical systems. We also review here all the variations of the partial control method that have been developed so far. In all the cases various systems of different dimensionality are treated in order to see the potential of this method. We believe that this method is a step forward in controlling chaos in presence of disturbances.



rate research

Read More

61 - E. Faleiro 2004
It was recently conjectured that 1/f noise is a fundamental characteristic of spectral fluctuations in chaotic quantum systems. This conjecture is based on the behavior of the power spectrum of the excitation energy fluctuations, which is different for chaotic and integrable systems. Using random matrix theory we derive theoretical expressions that explain the power spectrum behavior at all frequencies. These expressions reproduce to a good approximation the power laws of type 1/f (1/f^2) characteristics of chaotic (integrable) systems, observed in almost the whole frequency domain. Although we use random matrix theory to derive these results, they are also valid for semiclassical systems.
The problem of separation of an observed sum of chaotic signals into the individual components in the presence of noise on the path to the observer is considered. A noise threshold is found above which high-quality separation is impossible. Below the threshold, each signal is recovered with any prescribed accuracy. This effect is shown to be associated with the information content of the chaotic signals and a theoretical estimate is given for the threshold.
The induction motor controlled by Indirect Field Oriented Control (IFOC) is known to have high performance and better stability. This paper reports the dynamical behavior of an indirect field oriented control (IFOC) induction motor drive in the light of bifurcation theory. The speed of high performance induction motor drive is controlled by IFOC method. The knowledge of qualitative change of the behavior of the motor such as equilibrium points, limit cycles and chaos with the change of motor parameters and load torque are essential for proper control of the motor. This paper provides a numerical approach to understand better the dynamical behavior of an indirect field oriented control of a current-fed induction motor. The focus is on bifurcation analysis of the IFOC motor, with a particular emphasis on the change that affects the dynamics and stability under small variations of Proportional Integral controller (PI) parameters, load torque and k, the ratio of the rotor time constant and its estimate etc. Bifurcation diagrams are computed. This paper also attempts to discuss various types of the transition to chaos in the induction motor. The results of the obtained bifurcation simulations give useful guidelines for adjusting both motor model and PI controller parameters. It is also important to ensure desired operation of the motor when the motor shows chaotic behavior. Infinite numbers of unstable periodic orbits are embedded in a chaotic attractor. Any unstable periodic orbit can be stabilized by proper control algorithm. The delayed feedback control method to control chaos has been implemented in this system.
Delay-coordinate maps have been widely used recently to study nonlinear dynamical systems, where there is only access to the time series of one of their variables. Here, we show how the partial control method can be applied in this kind of framework in order to prevent undesirable situations for the system or even to reduce the variability of the observable time series associated with it. The main advantage of this control method, is that it allows to control delay-coordinate maps even if the control applied is smaller than the external disturbances present in the system. To illustrate how it works, we have applied it to three well-known models in Nonlinear Dynamics with different delays such as the two-dimensional cubic map, the standard map and the three-dimensional hyperchaotic Henon map. For the first time we show here how hyperchaotic systems can be partially controlled.
59 - Marcin Daszkiewicz 2017
In this article we synchronize by active control method all 19 identical Sprott systems provided in paper [10]. Particularly, we find the corresponding active controllers as well as we perform (as an example) the numerical synchronization of two Sprott-A models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا