Do you want to publish a course? Click here

On Regularized Losses for Weakly-supervised CNN Segmentation

139   0   0.0 ( 0 )
 Added by Yuri Boykov
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Minimization of regularized losses is a principled approach to weak supervision well-established in deep learning, in general. However, it is largely overlooked in semantic segmentation currently dominated by methods mimicking full supervision via fake fully-labeled training masks (proposals) generated from available partial input. To obtain such full masks the typical methods explicitly use standard regularization techniques for shallow segmentation, e.g. graph cuts or dense CRFs. In contrast, we integrate such standard regularizers directly into the loss functions over partial input. This approach simplifies weakly-supervised training by avoiding extra MRF/CRF inference steps or layers explicitly generating full masks, while improving both the quality and efficiency of training. This paper proposes and experimentally compares different losses integrating MRF/CRF regularization terms. We juxtapose our regularized losses with earlier proposal-generation methods using explicit regularization steps or layers. Our approach achieves state-of-the-art accuracy in semantic segmentation with near full-supervision quality.



rate research

Read More

Weakly-supervised learning based on, e.g., partially labelled images or image-tags, is currently attracting significant attention in CNN segmentation as it can mitigate the need for full and laborious pixel/voxel annotations. Enforcing high-order (global) inequality constraints on the network output (for instance, to constrain the size of the target region) can leverage unlabeled data, guiding the training process with domain-specific knowledge. Inequality constraints are very flexible because they do not assume exact prior knowledge. However, constrained Lagrangian dual optimization has been largely avoided in deep networks, mainly for computational tractability reasons. To the best of our knowledge, the method of [Pathak et al., 2015] is the only prior work that addresses deep CNNs with linear constraints in weakly supervised segmentation. It uses the constraints to synthesize fully-labeled training masks (proposals) from weak labels, mimicking full supervision and facilitating dual optimization. We propose to introduce a differentiable penalty, which enforces inequality constraints directly in the loss function, avoiding expensive Lagrangian dual iterates and proposal generation. From constrained-optimization perspective, our simple penalty-based approach is not optimal as there is no guarantee that the constraints are satisfied. However, surprisingly, it yields substantially better results than the Lagrangian-based constrained CNNs in [Pathak et al., 2015], while reducing the computational demand for training. By annotating only a small fraction of the pixels, the proposed approach can reach a level of segmentation performance that is comparable to full supervision on three separate tasks. While our experiments focused on basic linear constraints such as the target-region size and image tags, our framework can be easily extended to other non-linear constraints.
Most recent semantic segmentation methods train deep convolutional neural networks with fully annotated masks requiring pixel-accuracy for good quality training. Common weakly-supervised approaches generate full masks from partial input (e.g. scribbles or seeds) using standard interactive segmentation methods as preprocessing. But, errors in such masks result in poorer training since standard loss functions (e.g. cross-entropy) do not distinguish seeds from potentially mislabeled other pixels. Inspired by the general ideas in semi-supervised learning, we address these problems via a new principled loss function evaluating network output with criteria standard in shallow segmentation, e.g. normalized cut. Unlike prior work, the cross entropy part of our loss evaluates only seeds where labels are known while normalized cut softly evaluates consistency of all pixels. We focus on normalized cut loss where dense Gaussian kernel is efficiently implemented in linear time by fast Bilateral filtering. Our normalized cut loss approach to segmentation brings the quality of weakly-supervised training significantly closer to fully supervised methods.
We focus on tackling weakly supervised semantic segmentation with scribble-level annotation. The regularized loss has been proven to be an effective solution for this task. However, most existing regularized losses only leverage static shallow features (color, spatial information) to compute the regularized kernel, which limits its final performance since such static shallow features fail to describe pair-wise pixel relationship in complicated cases. In this paper, we propose a new regularized loss which utilizes both shallow and deep features that are dynamically updated in order to aggregate sufficient information to represent the relationship of different pixels. Moreover, in order to provide accurate deep features, we adopt vision transformer as the backbone and design a feature consistency head to train the pair-wise feature relationship. Unlike most approaches that adopt multi-stage training strategy with many bells and whistles, our approach can be directly trained in an end-to-end manner, in which the feature consistency head and our regularized loss can benefit from each other. Extensive experiments show that our approach achieves new state-of-the-art performances, outperforming other approaches by a significant margin with more than 6% mIoU increase.
We propose adversarial constrained-CNN loss, a new paradigm of constrained-CNN loss methods, for weakly supervised medical image segmentation. In the new paradigm, prior knowledge is encoded and depicted by reference masks, and is further employed to impose constraints on segmentation outputs through adversarial learning with reference masks. Unlike pseudo label methods for weakly supervised segmentation, such reference masks are used to train a discriminator rather than a segmentation network, and thus are not required to be paired with specific images. Our new paradigm not only greatly facilitates imposing prior knowledge on networks outputs, but also provides stronger and higher-order constraints, i.e., distribution approximation, through adversarial learning. Extensive experiments involving different medical modalities, different anatomical structures, different topologies of the object of interest, different levels of prior knowledge and weakly supervised annotations with different annotation ratios is conducted to evaluate our ACCL method. Consistently superior segmentation results over the size constrained-CNN loss method have been achieved, some of which are close to the results of full supervision, thus fully verifying the effectiveness and generalization of our method. Specifically, we report an average Dice score of 75.4% with an average annotation ratio of 0.65%, surpassing the prior art, i.e., the size constrained-CNN loss method, by a large margin of 11.4%. Our codes are made publicly available at https://github.com/PengyiZhang/ACCL.
Lesion segmentation on computed tomography (CT) scans is an important step for precisely monitoring changes in lesion/tumor growth. This task, however, is very challenging since manual segmentation is prohibitively time-consuming, expensive, and requires professional knowledge. Current practices rely on an imprecise substitute called response evaluation criteria in solid tumors (RECIST). Although these markers lack detailed information about the lesion regions, they are commonly found in hospitals picture archiving and communication systems (PACS). Thus, these markers have the potential to serve as a powerful source of weak-supervision for 2D lesion segmentation. To approach this problem, this paper proposes a convolutional neural network (CNN) based weakly-supervised lesion segmentation method, which first generates the initial lesion masks from the RECIST measurements and then utilizes co-segmentation to leverage lesion similarities and refine the initial masks. In this work, an attention-based co-segmentation model is adopted due to its ability to learn more discriminative features from a pair of images. Experimental results on the NIH DeepLesion dataset demonstrate that the proposed co-segmentation approach significantly improves lesion segmentation performance, e.g the Dice score increases about 4.0% (from 85.8% to 89.8%).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا