Inverse scattering for Schr{o}dinger operators on perturbed lattices


Abstract in English

We study the inverse scattering for Schr{o}dinger operators on locally perturbed periodic lattices. We show that the associated scattering matrix is equivalent to the Dirichlet-to-Neumann map for a boundary value problem on a finite part of the graph, and reconstruct scalar potentials as well as the graph structure from the knowledge of the S-matrix. In particular, we give a procedure for probing defects in hexagonal lattices (graphene).

Download