The peculiar metallic electronic states observed in the Kondo insulator, samarium hexaboride (SmB$_6$), has stimulated considerable attention among those studying non-trivial electronic phenomena. However, experimental studies of these states have led to controversial conclusions mainly to the difficulty and inhomogeneity of the SmB$_6$ crystal surface. Here, we show the detailed electronic structure of SmB$_6$ with angle-resolved photoelectron spectroscopy measurements of the three-fold (111) surface where only two inequivalent time-reversal-invariant momenta (TRIM) exist. We observe the metallic two-dimensional state was dispersed across the bulk Kondo gap. Its helical in-plane spin polarisation around the surface TRIM suggests that SmB$_6$ is topologically non-trivial, according to the topological classification theory for weakly correlated systems. Based on these results, we propose a simple picture of the controversial topological classification of SmB$_6$.