Do you want to publish a course? Click here

Searching for H$_{alpha}$ emitting sources around MWC758: SPHERE/ZIMPOL high-contrast imaging

64   0   0.0 ( 0 )
 Added by Nuria Huelamo
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

MWC758 is a young star surrounded by a transitional disk. Recently, a protoplanet candidate has been detected around MWC758 through high-resolution $L$-band observations. The candidate is located inside the disk cavity at a separation of $sim$111 mas from the central star, and at an average position angle of $sim$165.5 degrees. We have performed simultaneous adaptive optics observations of MWC758 in the H$_{alpha}$ line and the adjacent continuum using SPHERE/ZIMPOL at the Very Large Telescope (VLT). We aim at detecting accreting protoplanet candidates through spectral angular differential imaging observations. The data analysis does not reveal any H$_{alpha}$ signal around the target. The derived contrast curve in the B_Ha filter allows us to derive a 5$sigma$ upper limit of $sim$7.6 mag at 111 mas, the separation of the previously detected planet candidate. This contrast translates into a H$_{alpha}$ line luminosity of $L_{rm H_{alpha}}lesssim$ 5$times$10$^{-5}$ $L_{odot}$ at 111 mas, and an accretion luminosity of $L_{acc} <$3.7$times$10$^{-4},L_{odot}$. For the predicted mass range of MWC758b, 0.5-5 $M_{rm Jup}$, this implies accretion rates of $dot M lesssim$ 3.4$times$(10$^{-8}$-10$^{-9}),M_{odot}/yr$, for an average planet radius of 1.1 $R_{rm Jup}$. Therefore, our estimates are consistent with the predictions of accreting circumplanetary accretion models for $R_{rm in} = 1 R_{rm Jup}$. In any case, the non-detection of any H$_{alpha}$ emitting source in the ZIMPOL images does not allow us to unveil the true nature of the $L$ detected source.



rate research

Read More

We present current status of H$alpha$ high-contrast imaging observations with Subaru/SCExAO+VAMPIRES. Our adaptive optics correction at optical wavelengths in combination with (double) spectral differential imaging (SDI) and angular differential imaging (ADI) was capable of detecting a ring-like feature around omi Cet and the H$alpha$ counterpart of jet around RY Tau. We tested the post-processing by changing the order of ADI and SDI and both of the contrast limits achieved $sim10^{-3}-5times10^{-4}$ at $0.3^{primeprime}$, which is comparable to other H$alpha$ high-contrast imaging instruments in the southern hemisphere such as VLT/SPHERE, VLT/MUSE, and MagAO. Subaru/VAMPIRES provides great opportunities for H$alpha$ high-contrast imaging for northern hemisphere targets.
117 - G. Cugno 2018
Aims: We want to detect and quantify observables related to accretion processes occurring locally in circumstellar disks, which could be attributed to young forming planets. We focus on objects known to host protoplanet candidates and/or disk structures thought to be the result of interactions with planets. Methods: We analyzed observations of 6 young stars (age $3.5-10$ Myr) and their surrounding environments with the SPHERE/ZIMPOL instrument on the VLT in the H$alpha$ filter (656 nm) and a nearby continuum filter (644.9 nm). Results: We re-detect the known accreting M-star companion HD142527 B with the highest published signal to noise to date in both H$alpha$ and the continuum. We derive new astrometry ($r = 62.8^{+2.1}_{-2.7}$ mas and $text{PA} = (98.7,pm1.8)^circ$) and photometry ($Delta$N_Ha=$6.3^{+0.2}_{-0.3}$ mag, $Delta$B_Ha=$6.7pm0.2$ mag and $Delta$Cnt_Ha=$7.3^{+0.3}_{-0.2}$ mag) for the companion in agreement with previous studies, and estimate its mass accretion rate ($dot{M}approx1-2,times10^{-10},M_odottext{ yr}^{-1}$). A faint point-like source around HD135344 B (SAO206462) is also investigated, but a second deeper observation is required to reveal its nature. No other companions are detected. In the framework of our assumptions we estimate detection limits at the locations of companion candidates around HD100546, HD169142 and MWC758 and calculate that processes involving H$alpha$ fluxes larger than $sim8times10^{-14}-10^{-15},text{erg/s/cm}^2$ ($dot{M}>10^{-10}-10^{-12},M_odottext{ yr}^{-1}$) can be excluded. Furthermore, flux upper limits of $sim10^{-14}-10^{-15},text{erg/s/cm}^2$ ($dot{M}<10^{-11}-10^{-12},M_odot text{ yr}^{-1}$) are estimated within the gaps identified in the disks surrounding HD135344B and TW Hya.
The outflows of oxygen-rich asymptotic giant branch (AGB) stars are thought to be driven by radiation pressure by photon scattering on grains with sizes of tenths of microns. The details of the formation of dust in the extended atmospheres of these stars and the mass-loss process is still not well understood. We obtained quasi-simultaneous observations of the AGB star Mira using ALMA and ZIMPOL to probe the distribution of gas and large dust grains, respectively. The polarized light images show dust around Mira~A, the companion (Mira~B) and in a trail that connects the two sources. ALMA reveals that dust around Mira~A is contained in a high-gas-density region with a significant fraction of the polarized light arising from its edge. We constrained the gas density, temperature, and velocity within a few stellar radii from the star by modelling the CO $v=1, J=3-2$ line. We find a mass $(sim 3.8 pm 1.3) times 10^{-4}~M_odot$ to be contained between the stellar millimetre photosphere, $R^{rm 338~GHz}_star$, and $4~R^{rm 338~GHz}_star$. Our best-fit models with lower masses also reproduce the $^{13}$CO $v=0, J=3-2$ line emission from this region. We find TiO$_2$ and AlO abundances corresponding to 4.5% and $< 0.1$% of the total titanium and aluminium expected for a solar-composition gas. The low abundance of AlO allows for efficient Al depletion into dust already very close to the star, as expected from thermal dust emission observations and theoretical calculations of Mira variables. We constrain the presence of aluminium oxide grains based on the scattered light observations and our gas-phase model. We find that aluminium oxide grains can account for a significant fraction of the total aluminium atoms in this region only if the grains have sizes $lesssim 0.02~mu$m. This is an order of magnitude smaller than the maximum sizes predicted by dust-formation and wind-driving models.
The consortium of the Spectro-Polarimetric High-contrast Exoplanet REsearch installed at the Very Large Telescope (SPHERE/VLT) has been operating its guaranteed observation time (260 nights over five years) since February 2015. The main part of this time (200 nights) is dedicated to the detection and characterization of young and giant exoplanets on wide orbits. The large amount of data must be uniformly processed so that accurate and homogeneous measurements of photometry and astrometry can be obtained for any source in the field. To complement the European Southern Observatory pipeline, the SPHERE consortium developed a dedicated piece of software to process the data. First, the software corrects for instrumental artifacts. Then, it uses the speckle calibration tool (SpeCal) to minimize the stellar light halo that prevents us from detecting faint sources like exoplanets or circumstellar disks. SpeCal is meant to extract the astrometry and photometry of detected point-like sources (exoplanets, brown dwarfs, or background sources). SpeCal was intensively tested to ensure the consistency of all reduced images (cADI, Loci, TLoci, PCA, and others) for any SPHERE observing strategy (ADI, SDI, ASDI as well as the accuracy of the astrometry and photometry of detected point-like sources. SpeCal is robust, user friendly, and efficient at detecting and characterizing point-like sources in high contrast images. It is used to process all SPHERE data systematically, and its outputs have been used for most of the SPHERE consortium papers to date. SpeCal is also a useful framework to compare different algorithms using various sets of data (different observing modes and conditions). Finally, our tests show that the extracted astrometry and photometry are accurate and not biased.
We present the first part of our DARTTS-S (Disks ARound TTauri Stars with SPHERE) survey: Observations of 8 TTauri stars which were selected based on their strong (sub-)mm excesses using SPHERE / IRDIS polarimetric differential imaging (PDI) in the J and H bands. All observations successfully detect the disks, which appear vastly different in size, from $approx$80 au in scattered light to $>$400 au, and display total polarized disk fluxes between 0.06% and 0.89% of the stellar flux. For five of these disks, we are able to determine the three-dimensional structure and the flaring of the disk surface, which appears to be relatively consistent across the different disks, with flaring exponents $alpha$ between $approx$1.1 and $approx$1.6. We also confirm literature results w.r.t. the inclination and position angle of several of our disk, and are able to determine which side is the near side of the disk in most cases. While there is a clear trend of disk mass with stellar ages ($approx$1 Myr to $>$10 Myr), no correlations of disk structures with age were found. There are also no correlations with either stellar mass or sub-mm flux. We do not detect significant differences between the J and H bands. However, we note that while a high fraction (7/8) of the disks in our sample show ring-shaped sub-structures, none of them display spirals, in contrast to the disks around more massive Herbig Ae/Be stars, where spiral features are common.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا