Non-Markovian polaron dynamics in a trapped Bose-Einstein condensate


Abstract in English

We study the dynamics of an impurity embedded in a trapped Bose-Einstein condensate (Bose polaron), by recalling the quantum Brownian motion model. It is crucial that the model considers a parabolic trapping potential to resemble the experimental conditions. Thus, we detail here how the formal derivation changes due to the gas trap, in comparison to the homogeneous gas. We first find that the presence of a gas trap leads to a new form of the bath-impurity coupling constant and a larger degree in the super-ohmicity of the spectral density. This is manifested as a different dependence of the system dynamics on the past history. To quantify this, we introduce several techniques to compare the different amount of memory effects arising in the homogeneous and inhomogeneous gas. We find that it is higher in the second case. Moreover, we calculate the position variance of the impurity, represenitng a measurable quantity. We show that the impurity experiences super-diffusion and genuine position squeezing. Wdetail how both effects can be enhanced or inhibited by tuning the Bose-Einstein condensate trap frequency.

Download