Do you want to publish a course? Click here

An Extensive Photometric Catalog of CALIFA Galaxies

109   0   0.0 ( 0 )
 Added by Colleen Gilhuly
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an extensive compendium of photometrically-determined structural properties for all CALIFA galaxies in the Third Data Release (DR3). We exploit Sloan Digital Sky Survey (SDSS) images in order to extract one-dimensional (1D) $gri$ surface brightness profiles for all CALIFA DR3 galaxies. We also derive a variety of non-parametric quantities and parametric models fitted to 1D i-band profiles. The galaxy images are decomposed using the 2D bulge-disc decomposition programs IMFIT and GALFIT. The relative performance and merit of our 1D and 2D modelling approaches are assessed. Where possible, we compare and augment our photometry with existing measurements from the literature. Close agreement is generally found with the studies of Walcher et al. (2014) and Mendez-Abreu et al. (2017), though some significant differences exist. Various structural metrics are also highlighted on account of their tight dispersion against an independent variable, such as the circular velocity.



rate research

Read More

We present a two-dimensional multi-component photometric decomposition of 404 galaxies from the CALIFA Data Release 3. They represent all possible galaxies with no clear signs of interaction and not strongly inclined in the final CALIFA data release. Galaxies are modelled in the g, r, and i SDSS images including, when appropriate, a nuclear point source, bulge, bar, and an exponential or broken disc component. We use a human-supervised approach to determine the optimal number of structures to be included in the fit. The dataset, including the photometric parameters of the CALIFA sample, is released together with statistical errors and a visual analysis of the quality of each fit. The analysis of the photometric components reveals a clear segregation of the structural composition of galaxies with stellar mass. At high masses (log(Mstar/Msun)>11), the galaxy population is dominated by galaxies modelled with a single Sersic or a bulge+disc with a bulge-to-total (B/T) luminosity ratio B/T>0.2. At intermediate masses (9.5<log(Mstar/Msun)<11), galaxies described with bulge+disc but B/T < 0.2 are preponderant, whereas, at the low mass end (log(Mstar/Msun)<9.5), the prevailing population is constituted by galaxies modelled with either pure discs or nuclear point sources+discs (i.e., no discernible bulge). We obtain that 57% of the volume corrected sample of disc galaxies in the CALIFA sample host a bar. This bar fraction shows a significant drop with increasing galaxy mass in the range 9.5<log(Mstar/Msun)<11.5. The analyses of the extended multi-component radial profile result in a volume-corrected distribution of 62%, 28%, and 10% for the so-called Type I, Type II, and Type III disc profiles, respectively. These fractions are in discordance with previous findings. We argue that the different methodologies used to detect the breaks are the main cause for these differences.
We present a new catalog of HII regions based on the integral field spectroscopy (IFS) data of the extended CALIFA and PISCO samples. The selection of HII regions was based on two assumptions: a clumpy structure with high contrast of H$alpha$ emission and an underlying stellar population comprising young stars. The catalog provides the spectroscopic information of 26,408 individual regions corresponding to 924 galaxies, including the flux intensities and equivalent widths of 51 emission lines covering the wavelength range between 3745-7200A. To our knowledge, this is the largest catalog of spectroscopic properties of HII regions. We explore a new approach to decontaminate the emission lines from diffuse ionized gas contribution. This diffuse gas correction was estimated to correct every emission line within the considered spectral range. With the catalog of HII regions corrected, new demarcation lines are proposed for the classical diagnostic diagrams. Finally, we study the properties of the underlying stellar populations of the HII regions. It was found that there is a direct relationship between the ionization conditions on the nebulae and the properties of stellar populations besides the physicals condition on the ionized regions.
We construct maps of the oxygen abundance distribution across the disks of 88 galaxies using CALIFA data release 2 (DR2) spectra. The position of the center of a galaxy (coordinates on the plate) were also taken from the CALIFA DR2. The galaxy inclination, the position angle of the major axis, and the optical radius were determined from the analysis of the surface brightnesses in the SDSS $g$ and $r$ bands of the photometric maps of SDSS data release 9. We explore the global azimuthal abundance asymmetry in the disks of the CALIFA galaxies and the presence of a break in the radial oxygen abundance distribution. We found that there is no significant global azimuthal asymmetry for our sample of galaxies, i.e., the asymmetry is small, usually lower than 0.05 dex. The scatter in oxygen abundances around the abundance gradient has a comparable value, $lesssim 0.05$ dex. A significant (possibly dominant) fraction of the asymmetry can be attributed to the uncertainties in the geometrical parameters of these galaxies. There is evidence for a flattening of the radial abundance gradient in the central part of 18 galaxies. We also estimated the geometric parameters (coordinates of the center, the galaxy inclination and the position angle of the major axis) of our galaxies from the analysis of the abundance map. The photometry-map-based and the abundance-map-based geometrical parameters are relatively close to each other for the majority of the galaxies but the discrepancy is large for a few galaxies with a flat radial abundance gradient.
Schwarzschild orbit-based dynamical models are widely used to uncover the internal dynamics of early-type galaxies and globular clusters. Here we present for the first time the Schwarzschild models of late-type galaxies: an SBb galaxy NGC 4210 and an S0 galaxy NGC 6278 from the CALIFA survey. The mass profiles within $2,R_e$ are constrained well with $1sigma$ statistical error of $sim 10%$. The luminous and dark mass can be disentangled with uncertainties of $sim 20%$ and $sim 50%$ respectively. From $R_e$ to $2,R_e$, the dark matter fraction increases from $14pm10%$ to $18pm10%$ for NGC 4210 and from $15pm10%$ to $30pm20%$ for NGC 6278. The velocity anisotropy profiles of both $sigma_r/sigma_t$ and $sigma_z/sigma_R$ are well constrained. The inferred internal orbital distributions reveal clear substructures. The orbits are naturally separated into three components: a cold component with near circular orbits, a hot component with near radial orbits, and a warm component in between. The photometrically-identified exponential disks are predominantly made up of cold orbits only beyond $sim 1,R_e$, while they are constructed mainly with the warm orbits inside. Our dynamical hot components are concentrated in the inner regions, similar to the photometrically-identified bulges. The reliability of the results, especially the orbit distribution, are verified by applying the model to mock data.
107 - Nikhil Arora 2021
We present an extensive catalog of non-parametric structural properties derived from optical and mid-infrared imaging for 4585 galaxies from the MaNGA survey. DESI and WISE imaging are used to extract surface brightness profiles in the g, r, z, W1, W2 photometric bands. Our optical photometry takes advantage of the automated algorithm AutoProf and probes surface brightnesses that typically reach below 29 mag/arcsec^2 in the r band, while our WISE photometry achieves 28 mag/arcsec^2 in the W1 band. Neighbour density measures and central/satellite classifications are also provided for a large sub-sample of the MaNGA galaxies. Highlights of our analysis of galaxy light profiles include: (i) an extensive comparison of galaxian structural properties that illustrates the robustness of non-parametric extraction of light profiles over parametric methods; (ii) the ubiquity of bimodal structural properties suggesting the existence of galaxy families in multiple dimensions; and, (iii) an appreciation that structural properties measured relative to total light, regardless of the fractional level, are uncertain. We study galaxy scaling relations based on photometric parameters, and present detailed comparisons with literature and theory. Salient features of this analysis include the near-constancy of the slope and scatter of the size-luminosity and size-stellar mass relations for late-type galaxies with wavelength, and the saturation of the central surface density, measured within 1 kpc, for elliptical galaxies with M* > 10.7 Msol (corresponding to Sigma_1 ~ 10^{10} Msol/kpc^2). The multi-band photometry, environmental parameters, and structural scaling relations presented are useful constraints for stellar population and galaxy formation models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا