Do you want to publish a course? Click here

The Open Graph Axiom and Mengers Conjecture

102   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Menger conjectured that subsets of $mathbb R$ with the Menger property must be $sigma$-compact. While this is false when there is no restriction on the subsets of $mathbb R$, for projective subsets it is known to follow from the Axiom of Projective Determinacy, which has considerable large cardinal consistency strength. We show that the perfect set version of the Open Graph Axiom for projective sets of reals, with consistency strength only an inaccessible cardinal, also implies Mengers conjecture restricted to this family of subsets of $mathbb R$.

rate research

Read More

Menger conjectured that subsets of R with the Menger property must be ${sigma}$-compact. While this is false when there is no restriction on the subsets of R, for projective subsets it is known to follow from the Axiom of Projective Determinacy, which has considerable large cardinal consistency strength. We note that in fact, Mengers conjecture for projective sets has consistency strength of only an inaccessible cardinal.
61 - Jonas Reitz 2006
A new axiom is proposed, the Ground Axiom, asserting that the universe is not a nontrivial set-forcing extension of any inner model. The Ground Axiom is first-order expressible, and any model of ZFC has a class-forcing extension which satisfies it. The Ground Axiom is independent of many well-known set-theoretic assertions including the Generalized Continuum Hypothesis, the assertion V=HOD that every set is ordinal definable, and the existence of measurable and supercompact cardinals. The related Bedrock Axiom, asserting that the universe is a set-forcing extension of a model satisfying the Ground Axiom, is also first-order expressible, and its negation is consistent. As many of these results rely on forcing with proper classes, an appendix is provided giving an exposition of the underlying theory of proper class forcing.
60 - Jonas Reitz 2006
A new axiom is proposed, the Ground Axiom, asserting that the universe is not a nontrivial set forcing extension of any inner model. The Ground Axiom is first-order expressible, and any model of ZFC has a class forcing extension which satisfies it. The Ground Axiom is independent of many well-known set-theoretic assertions including the Generalized Continuum Hypothesis, the assertion V=HOD that every set is ordinal definable, and the existence of measurable and supercompact cardinals. The related Bedrock Axiom, asserting that the universe is a set forcing extension of a model satisfying the Ground Axiom, is also first-order expressible, and its negation is consistent.
The Omitting Types Theorem in model theory and the Baire Category Theorem in topology are known to be closely linked. We examine the precise relation between these two theorems. Working with a general notion of logic we show that the classical Omitting Types Theorem holds for a logic if a certain associated topological space has all closed subspaces Baire. We also consider stronger Baire category conditions, and hence stronger Omitting Types Theorems, including a game version. We use examples of spaces previously studied in set-theoretic topology to produce abstract logics showing that the game Omitting Types statement is consistently not equivalent to the classical one.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا