Do you want to publish a course? Click here

Field induced magnon excitation and in gap absorption of Kitaev candidate RuCl3

83   0   0.0 ( 0 )
 Added by Liyu Shi
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use time-domain terahertz spectroscopy to measure the low energy conductivity and magnons in RuCl$_3$ under external magnetic field. At zero field, an oscillation with a frequency of 0.62 THz is clearly observed in time-domain spectrum below T$_N$, which is identified as a magnon excitation in the magnetic order state. The magnon excitation is not affected by the external magnetic field $textbf{H}_{DC}$ when it is applied along the c-axis, but is clearly suppressed when $textbf{H}_{DC}$ is applied within ab plane. More interestingly, when the magnetic component of THz wave $textbf{h}(t)$ is perpendicular to the applied in-plane magnetic field, we observe another coherent oscillation at slightly higher energy scale at the field above 2 T, which is eventually suppressed for $H_{DC}>$5 T. The measurement seems to indicate that the in-plane magnetic field can lift the degeneracy of two branches of low energy magnons at $Gamma$ point. The low energy optical conductivity calculated from the measured transmission spectrum is dominated by a broad continuum contribution, which is not affected by changing either temperature or external magnetic field. The continuum is likely to be related to the fractional spin excitation due to dominated Kitaev interaction in the material.

rate research

Read More

Revealing the spin excitations of complex quantum magnets is key to developing a minimal model that explains the underlying magnetic correlations in the ground state. We investigate the low-energy magnons in $alpha$-RuCl$_3$ by combining time-domain terahertz spectroscopy under an external magnetic field and model Hamiltonian calculations. We observe two absorption peaks around 2.0 and 2.4 meV, which we attribute to zone-center spin waves. Using linear spin-wave theory with only nearest-neighbor terms of the exchange couplings, we calculate the antiferromagnetic resonance frequencies and reveal their dependence on an external field applied parallel to the nearest-neighbor Ru-Ru bonds. We find that the magnon behavior in an applied magnetic field can be understood only by including an off-diagonal $Gamma$ exchange term to the minimal Heisenberg-Kitaev model. Such an anisotropic exchange interaction that manifests itself as a result of strong spin-orbit coupling can naturally account for the observed mixing of the modes at higher fields strengths.
The honeycomb Kitaev-Heisenberg model is a source of a quantum spin liquid with Majorana fermions and gauge flux excitations as fractional quasiparticles. In the quest of finding a pertinent material, $alpha$-RuCl$_{3}$ recently emerged as a prime candidate. Here we unveil highly unusual low-temperature heat conductivity $kappa$ of $alpha$-RuCl$_{3}$: beyond a magnetic field of $B_capprox$ 7.5 T, $kappa$ increases by about one order of magnitude, resulting in a large magnetic field dependent peak at about 7 K, both for in-plane as well as out-of-plane transport. This clarifies the unusual magnetic field dependence unambiguously to be the result of severe scattering of phonons off putative Kitaev-Heisenberg excitations in combination with a drastic field-induced change of the magnetic excitation spectrum. In particular, an unexpectedly large energy gap arises, which increases approximately linearly with the magnetic field and reaches a remarkably large $hbaromega_0/k_Bapprox $ 50 K at 18 T.
Kitaev-type interactions between neighbouring magnetic moments emerge in the honeycomb material ${alpha}$-RuCl3. It is debated however whether these Kitaev interactions are ferromagnetic or antiferromagnetic. With electron energy loss spectroscopy (EELS) we study the lowest excitation across the Mott-Hubbard gap, which involves a d4 triplet in the final state and therefore is sensitive to nearest-neighbor spin-spin correlations. At low temperature the spectral weight of these triplets is strongly enhanced, in accordance with optical data. We show that the magnetic correlation function that determines this EELS spectral weight is directly related to a Kitaev-type spin-spin correlator and that the temperature dependence agrees very well with the results of a microscopic magnetic Hamiltonian for ${alpha}$-RuCl3 with ferromagnetic Kitaev coupling.
It is now well established that the Kitaev honeycomb model in a magnetic field along the $[111]$-direction harbors an intermediate gapless quantum spin liquid (QSL) phase sandwiched between a gapped non-abelian QSL at low fields $H< H_{c1}$ and a partially polarized phase at high fields $H> H_{c2}$. Here, we analyze the low field and high field phases and phase transitions in terms of single- and two-magnon excitations using exact diagonalization (ED) and density matrix renormalization group (DMRG) methods. We find that the energy to create a bound state of two-magnons $Delta_p$ becomes lower than the energy to create a single spin flip $Delta_s$ near $H_{c2}$. In the entire Kitaev spin liquid $Delta_p<Delta_s$ and both gaps vanish at $H_{c2}$. We make testable predictions for magnon pairing that could be observable in Raman scattering measurements on Kitaev QSL candidate materials.
We investigate the phononic in-plane longitudinal low-temperature thermal conductivity kappa_ab of the Kitaev quantum magnet alpha-RuCl3 for large in-plane magnetic fields up to 33 T. Our data reveal for fields larger than the critical field Bc ~ 8 T, at which the magnetic order is suppressed, a dramatic increase of kappa_ab at all temperatures investigated. The analysis of our data shows that the phonons are not only strongly scattered by a magnetic mode at relatively large energy which scales roughly linearly with the magnetic field, but also by a small-energy mode which emerges near Bc with a square-root-like field dependence. While the former is in striking agreement with recent spin wave theory (SWT) results of the magnetic excitation spectrum at the Gamma point, the energy of the latter is too small to be compatible with the SWT-expected magnon gap at the M point, despite the matching field dependence. Therefore, an alternative scenario based on phonon scattering off the thermal excitation of random-singlet states is proposed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا