Do you want to publish a course? Click here

Cumulative probability for the sum of exponentially-distributed variables

359   0   0.0 ( 0 )
 Added by Cecilia Chirenti
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Exponential distributions appear in a wide range of applications including chemistry, nuclear physics, time series analyses, and stock market trends. There are conceivable circumstances in which one would be interested in the cumulative probability distribution of the sum of some number of exponential variables, with potentially differing constants in their exponents. In this article we present a pedagogical derivation of the cumulative distribution, which reproduces the known formula from power density analyses in the limit that all of the constants are equal, and which assumes no prior knowledge of combinatorics except for some of the properties of a class of symmetric polynomials in $n$ variables (Schur polynomials).



rate research

Read More

69 - Yan Zhang 2021
In probability theory, the independence is a very fundamental concept, but with a little mystery. People can always easily manipulate it logistically but not geometrically, especially when it comes to the independence relationships among more that two variables, which may also involve conditional independence. Here I am particularly interested in visualizing Markov chains which have the well known memoryless property. I am not talking about drawing the transition graph, instead, I will draw all events of the Markov process in a single plot. Here, to simplify the question, this work will only consider dichotomous variables, but all the methods actually can be generalized to arbitrary set of discrete variables.
A search for power-law fluctuations within the framework of the intermittency method is ongoing to locate the critical point of the strongly interacting matter. In particular, experimental data on proton and pion production in heavy-ion collisions are analyzed in transverse-momentum, $p_T$, space. In this regard, we have studied the dependence of the second scaled factorial moment $F_2$ of particle multiplicity distribution on the number of subdivisions of transverse momentum-interval used in the analysis. The study is performed using a simple model with a power-law two-particle correlation function in $p_T$. We observe that $F_2$ values depend on the size and position of the $p_T$ interval. However, when we convert the non-uniform transverse-momentum distribution to uniform one using cumulative transformation, $F_2$ calculated in subdivisions of the cumulative $p_T$ becomes independent of the cumulative-$p_T$ interval. The scaling behaviour of $F_2$ for the cumulative variable is observed. Moreover, $F_2$ follows a power law with the number of subdivisions of the cumulative-$p_T$ interval with the intermittency index close to the correlation functions exponent.
145 - Ian Taylor 2015
This is a typeset version of Alan Turings Second World War research paper textit{The Applications of Probability to Cryptography}. A companion paper textit{Paper on Statistics of Repetitions} is also available in typeset form from arXiv at arXiv:1505.04715. The original papers give a text along with figures and tables. They provide a fascinating insight into the preparation of the manuscripts, as well as the style of writing at a time when typographical errors were corrected by hand, and mathematical expression handwritten into spaces left in the text. Working with the papers in their original format provides some challenges, so they have been typeset for easier reading and access.
The median probability model (MPM) Barbieri and Berger (2004) is defined as the model consisting of those variables whose marginal posterior probability of inclusion is at least 0.5. The MPM rule yields the best single model for prediction in orthogonal and nested correlated designs. This result was originally conceived under a specific class of priors, such as the point mass mixtures of non-informative and g-type priors. The MPM rule, however, has become so very popular that it is now being deployed for a wider variety of priors and under correlated designs, where the properties of MPM are not yet completely understood. The main thrust of this work is to shed light on properties of MPM in these contexts by (a) characterizing situations when MPM is still safe under correlated designs, (b) providing significant generalizations of MPM to a broader class of priors (such as continuous spike-and-slab priors). We also provide new supporting evidence for the suitability of g-priors, as opposed to independent product priors, using new predictive matching arguments. Furthermore, we emphasize the importance of prior model probabilities and highlight the merits of non-uniform prior probability assignments using the notion of model aggregates.
144 - Anthony B. Morton 2010
The Monty Hall problem is the TV game scenario where you, the contestant, are presented with three doors, with a car hidden behind one and goats hidden behind the other two. After you select a door, the host (Monty Hall) opens a second door to reveal a goat. You are then invited to stay with your original choice of door, or to switch to the remaining unopened door, and claim whatever you find behind it. Assuming your objective is to win the car, is your best strategy to stay or switch, or does it not matter? Jason Rosenhouse has provided the definitive analysis of this game, along with several intriguing variations, and discusses some of its psychological and philosophical implications. This extended review examines several themes from the book in some detail from a Bayesian perspective, and points out one apparently inadvertent error.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا