No Arabic abstract
5d transition metal oxides offer new opportunities to test our understanding of the interplay of correlation effects and spin-orbit interactions in materials in the absence of a single dominant interaction. The subtle balance between solid-state interactions can result in new mechanisms that minimize the interaction energy, and in material properties of potential use for applications. We focus here on the 5d transition metal oxide NaOsO3, a strong candidate for the realization of a magnetically driven transition from a metallic to an insulating state exploiting the so-called Slater mechanism. Experimental results are derived from non-resonant and resonant x-ray single crystal diffraction at the Os L-edges. A change in the crystallographic symmetry does not accompany the metal-insulator transition in the Slater mechanism and, indeed, we find no evidence of such a change in NaOsO3. An equally important experimental observation is the emergence of the (300) Bragg peak in the resonant condition with the onset of magnetic order. The intensity of this space-group forbidden Bragg peak continuously increases with decreasing temperature in line with the square of intensity observed for an allowed magnetic Bragg peak. Our main experimental results, the absence of crystal symmetry breaking and the emergence of a space-group forbidden Bragg peak with developing magnetic order, support the use of the Slater mechanism to interpret the metal-insulator transition in NaOsO3. We successfully describe our experimental results with simulations of the electronic structure and, also, with an atomic model based on the established symmetry of the crystal and magnetic structure.
The metal-insulator transition (MIT) is one of the most dramatic manifestations of electron correlations in materials. Various mechanisms producing MITs have been extensively considered, including the Mott (electron localization via Coulomb repulsion), Anderson (localization via disorder) and Peierls (localization via distortion of a periodic 1D lattice). One additional route to a MIT proposed by Slater, in which long-range magnetic order in a three dimensional system drives the MIT, has received relatively little attention. Using neutron and X-ray scattering we show that the MIT in NaOsO3 is coincident with the onset of long-range commensurate three dimensional magnetic order. Whilst candidate materials have been suggested, our experimental methodology allows the first definitive demonstration of the long predicted Slater MIT. We discuss our results in the light of recent reports of a Mott spin-orbit insulating state in other 5d oxides.
By means of first principles schemes based on magnetically constrained density functional theory and on the band unfolding technique we study the effect of doping on the conducting behaviour of the Lifshitz magnetic insulator NaOsO3. Electron doping is treated realistically within a supercell approach by replacing sodium with magnesium at different concentrations. Our data indicate that by increasing carrier concentration the system is subjected to two types of transition: (i) insulator to bad metal at low doping and low temperature and (ii) bad metal to metal at high doping and/or high-temperature. The predicted doping-induced insulator to metal transition (MIT) has similar traits with the temperature driven MIT reported in the undoped compound. Both develops in an itinerant background and exhibit a coupled electronic and magnetic behaviour characterized by the gradual quenching of the (pseudo)-gap associated with an reduction of the local spin moment. Unlike the temperature-driven MIT, chemical doping induces substantial modifications of the band structure and the MIT cannot be fully described as a Lifshitz process.
The magnetically driven metal-insulator transition (MIT) was predicted by Slater in the fifties. Here a long-range antiferromagnetic (AF) order can open up a gap at the Brillouin electronic band boundary regardless of the Coulomb repulsion magnitude. However, while many low-dimensional organic conductors display evidence for an AF driven MIT, in three-dimensional (3D) systems the Slater MIT still remains elusive. We employ terahertz and infrared spectroscopy to investigate the MIT in the NaOsO3 3D antiferromagnet. From the optical conductivity analysis we find evidence for a continuous opening of the energy gap, whose temperature dependence can be well described in terms of a second order phase transition. The comparison between the experimental Drude spectral weight and the one calculated through Local Density Approximation (LDA) shows that electronic correlations play a limited role in the MIT. All the experimental evidence demonstrates that NaOsO3 is the first known 3D Slater insulator.
Higher accuracy low temperature charge transport measurements in combination with precise X-ray diffraction experiment have allowed detecting the symmetry lowering in the single domain Tm0.19Yb0.81B12 crystals of the family of dodecaborides with metal-insulator transition. Basing on the fine structure analysis we discover formation of dynamic charge stripes within the semiconducting matrix of Tm0.19Yb0.81B12. The charge dynamics in these metallic nano-size conducting channels is characterized by broad-band optical spectroscopy that allowed estimating the frequency (~2.4 10^11 Hz) of quantum motion of the charge carriers. It is suggested that caused by cooperative Jahn-Teller effect in the boron sub-lattice, the large amplitude rattling modes of the Tm and Yb ions are responsible for modulation of the conduction band along [110] direction through the variation of 5d-2p hybridization of electron states.
Iron oxide is a key compound to understand the state of the deep Earth. It has been believed that previously known oxides such as FeO and Fe2O3 will be dominant at the mantle conditions. However, recent observation of FeO2 shed another light to the composition of the deep lower mantle (DLM) and thus understanding of the physical properties of FeO2 will be critical to model DLM. Here, we report the electronic structure and structural properties of FeO2 by using density functional theory (DFT) and dynamic mean field theory (DMFT). The crystal structure of FeO2 is composed of Fe2+ and O2 2- dimers, where the Fe ions are surround by the octahedral O atoms. We found that the bond length of O2 dimer, which is very sensitive to the change of the Coulomb interaction U of Fe 3d orbital, plays an important role in determining the electronic structures. The band structures of DFT+DMFT show that the metal-insulator transition is driven by the change of U and pressure. We suggest that the correlation effect should be considered to correctly describe the physical properties of FeO2 compound.