In this study we show a way of achieving the reverse evolution of n-dimensional quantum walks by introducing interventions on the coin degree of freedom during the forward progression of the coin-walker system. Only a single intervention is required to reverse a quantum walker on a line to its initial positon and the number of interventions increases with the dimensionality of the walk. We present an analytical treatment to prove these results. This reversion scheme can be used to generate periodic bounded quantum walks and to control the locations where particle can be found with highest probability. From the point of view of quantum computations and simulations, this scheme could be useful in resetting quantum operations and implementing certain quantum gates.