No Arabic abstract
The contribution of line-of-sight peculiar velocities to the observed redshift of objects breaks the translational symmetry of the underlying theory, modifying the predicted 2-point functions. These `wide angle effects have mostly been studied using linear perturbation theory in the context of the multipoles of the correlation function and power spectrum. In this work we present the first calculation of wide angle terms in the Zeldovich approximation, which is known to be more accurate than linear theory on scales probed by the next generation of galaxy surveys. We present the exact result for dark matter and perturbatively biased tracers as well as the small angle expansion of the configuration- and Fourier-space two-point functions and the connection to the multi-frequency angular power spectrum. We compare different definitions of the line-of-sight direction and discuss how to translate between them. We show that wide angle terms can reach tens of percent of the total signal in a measurement at low redshift in some approximations, and that a generic feature of wide angle effects is to slightly shift the Baryon Acoustic Oscillation scale.
Redshift-space distortions (RSD) in galaxy redshift surveys generally break both the isotropy and homogeneity of galaxy distribution. While the former aspect is particularly highlighted as a probe of growth of structure induced by gravity, the latter aspect, often quoted as wide-angle RSD but ignored in most of the cases, will become important and critical to account for as increasing the statistical precision in next-generation surveys. However, the impact of wide-angle RSD has been mostly studied using linear perturbation theory. In this paper, employing the Zeldovich approximation, i.e., first-order Lagrangian perturbation theory for gravitational evolution of matter fluctuations, we present a quasi-linear treatment of wide-angle RSD, and compute the cross-correlation function. The present formalism consistently reproduces linear theory results, and can be easily extended to incorporate relativistic corrections (e.g., gravitational redshift).
Redshift space distortions (RSD) in the void-galaxy correlation $xi^s$ provide information on the linear growth rate of structure in low density environments. Accurate modelling of these RSD effects can also allow the use of voids in competitive Alcock-Paczynski measurements. Linear theory models of $xi^s$ are able to provide extremely good descriptions of simulation data on all scales provided the real space void positions are known. However, by reference to simulation data we demonstrate the failure of the assumptions implicit in current models of $xi^s$ for voids identified directly in redshift space, as would be simplest using real observational data. To overcome this problem we instead propose using a density-field reconstruction method based on the Zeldovich approximation to recover the real space void positions from redshift space data. We show that this recovers the excellent agreement between theory and data for $xi^s$. Performing the reconstruction requires an input cosmological model so, to be self-consistent, we have to perform reconstruction for every model to be tested. We apply this method to mock galaxy and void catalogues in the Big MultiDark $N$-body simulation and consistently recover the fiducial growth rate to a precision of $3.4%$ using the simulation volume of $(2.5;h^{-1}mathrm{Gpc})^3$.
The analysis of Redshift-Space Distortions (RSD) within galaxy surveys provides constraints on the amplitude of peculiar velocities induced by structure growth, thereby allowing tests of General Relativity on extremely large scales. The next generation of galaxy redshift surveys, such as the Baryon Oscillation Spectroscopic Survey (BOSS), and the Euclid experiment will survey galaxies out to z=2, over 10,000--20,000 sq deg. In such surveys, galaxy pairs with large comoving separation will preferentially have a wide angular separation. In standard plane-parallel theory the displacements of galaxy positions due to RSD are assumed to be parallel for all galaxies, but this assumption will break down for wide-angle pairs. Szapudi 2004 and Papai & Szapudi 2008 provided a methodology, based on tripolar spherical harmonics expansion, for computing the redshift-space correlation function for all angular galaxy pair separations. In this paper we introduce a new procedure for analysing wide-angle effects in numerical simulations. We are able to separate, demonstrate, and fit each of the effects described by the wide-angle RSD theory. Our analysis highlights some of the nuances of dealing with wide-angle pairs, and shows that the effects are not negligible even for relatively small angles. This analysis will help to ensure the full exploitation of future surveys for RSD measurements, which are currently confined to pair separations less than sim80 Mpc/h out to zsimeq 0.5.
We have derived estimators for the linear growth rate of density fluctuations using the cross-correlation function of voids and haloes in redshift space, both directly and in Fourier form. In linear theory, this cross-correlation contains only monopole and quadrupole terms. At scales greater than the void radius, linear theory is a good match to voids traced out by haloes in N-body simulations; small-scale random velocities are unimportant at these radii, only tending to cause small and often negligible elongation of the redshift-space cross-correlation function near its origin. By extracting the monopole and quadrupole from the cross-correlation function, we measure the linear growth rate without prior knowledge of the void profile or velocity dispersion. We recover the linear growth parameter $beta$ to 9% precision from an effective volume of 3(Gpc/h)^3 using voids with radius greater than 25Mpc/h. Smaller voids are predominantly sub-voids, which may be more sensitive to the random velocity dispersion; they introduce noise and do not help to improve the measurement. Adding velocity dispersion as a free parameter allows us to use information at radii as small as half of the void radius. The precision on $beta$ is reduced to approximately 5%. Contrary to the simple redshift-space distortion pattern in overdensities, voids show diverse shapes in redshift space, and can appear either elongated or flattened along the line of sight. This can be explained by the competing amplitudes of the local density contrast, plus the radial velocity profile and its gradient, with the latter two factors being determined by the cumulative density profile of voids. The distortion pattern is therefore determined solely by the void profile and is different for void-in-cloud and void-in-void. This diversity of redshift-space void morphology complicates measurements of the Alcock-Paczynski effect using voids.
We compute a general expression for the contribution of vector perturbations to the redshift-space distortion of galaxy surveys. We show that they contribute to the same multipoles of the correlation function as scalar perturbations and should thus in principle be taken into account in data analysis. We derive constraints for next-generation surveys on the amplitude of two sources of vector perturbations, namely non-linear clustering and topological defects. While topological defects leave a very small imprint on redshift-space distortions, we show that the multipoles of the correlation function are sensitive to vorticity induced by non-linear clustering. Therefore future redshift surveys such as DESI or the SKA should be capable of measuring such vector modes, especially with the hexadecapole which appears to be the most sensitive to the presence of vorticity.