Do you want to publish a course? Click here

Large Thermal Hall Effect in $alpha$-RuCl$_3$: Evidence for Heat Transport by Kitaev-Heisenberg Paramagnons

74   0   0.0 ( 0 )
 Added by Christian Hess
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The honeycomb Kitaev model in a magnetic field is a source of a topological quantum spin liquid with Majorana fermions and gauge flux excitations as fractional quasiparticles. We present experimental results for the thermal Hall effect of the material $alpha$-RuCl$_{3}$ which recently emerged as a prime candidate for realizing such physics. At temperatures above long-range magnetic ordering $Tgtrsim T_Napprox8$ K, we observe with an applied magnetic field $B$ perpendicular to the honeycomb layers a sizeable positive transversal heat conductivity $kappa_{xy}$ which increases linearly with $B$. Upon raising the temperature, $kappa_{xy}(T)$ increases strongly, exhibits a broad maximum at around 30 K, and eventually becomes negligible at $Tgtrsim 125$ K. Remarkably, the longitudinal heat conductivity $kappa_{xx}(T)$ exhibits a sizeable positive thermal magnetoresistance effect. Thus, our findings provide clear-cut evidence for longitudinal and transverse magnetic heat transport and underpin the unconventional nature of the quasiparticles in the paramagnetic phase of $alpha$-RuCl$_{3}$.



rate research

Read More

The honeycomb Kitaev-Heisenberg model is a source of a quantum spin liquid with Majorana fermions and gauge flux excitations as fractional quasiparticles. In the quest of finding a pertinent material, $alpha$-RuCl$_{3}$ recently emerged as a prime candidate. Here we unveil highly unusual low-temperature heat conductivity $kappa$ of $alpha$-RuCl$_{3}$: beyond a magnetic field of $B_capprox$ 7.5 T, $kappa$ increases by about one order of magnitude, resulting in a large magnetic field dependent peak at about 7 K, both for in-plane as well as out-of-plane transport. This clarifies the unusual magnetic field dependence unambiguously to be the result of severe scattering of phonons off putative Kitaev-Heisenberg excitations in combination with a drastic field-induced change of the magnetic excitation spectrum. In particular, an unexpectedly large energy gap arises, which increases approximately linearly with the magnetic field and reaches a remarkably large $hbaromega_0/k_Bapprox $ 50 K at 18 T.
The Kitaev quantum spin liquid displays the fractionalization of quantum spins into Majorana fermions. The emergent Majorana edge current is predicted to manifest itself in the form of a finite thermal Hall effect, a feature commonly discussed in topological superconductors. Here we report on thermal Hall conductivity $kappa_{xy}$ measurements in $alpha$-RuCl$_3$, a candidate Kitaev magnet with the two-dimensional honeycomb lattice. In a spin-liquid (Kitaev paramagnetic) state below the temperature characterized by the Kitaev interaction $J_K/k_B sim 80$ K, positive $kappa_{xy}$ develops gradually upon cooling, demonstrating the presence of highly unusual itinerant excitations. Although the zero-temperature property is masked by the magnetic ordering at $T_N=7$ K, the sign, magnitude, and $T$-dependence of $kappa_{xy}/T$ at intermediate temperatures follows the predicted trend of the itinerant Majorana excitations.
146 - T. Yokoi , S. Ma , Y. Kasahara 2020
Heat transport mediated by Majorana edge modes in a magnetic insulator leads to a half-integer thermal quantum Hall conductance, which has recently been reported for the two-dimensional honeycomb material $alpha$-RuCl$_3$. While the conventional electronic Hall effect requires a perpendicular magnetic field, we find that this is not the case in $alpha$-RuCl$_3$. Strikingly, the thermal Hall plateau appears even for a magnetic field with no out-of-plane components. The field-angular variation of the quantized thermal Hall conductance has the same sign structure of the topological Chern number, which is either $pm$1, as the Majorana band structure of the pure Kitaev spin liquid. This observation of a half-integer anomalous thermal Hall effect firmly establishes that the Kitaev interaction is primarily responsible and that the non-Abelian topological order associated with fractionalization of the local magnetic moments persists even in the presence of non-Kitaev interactions in $alpha$-RuCl$_3$.
We have investigated the sample dependence of the half-integer thermal Hall effect in $alpha$-RuCl$_3$ under a magnetic field tilted 45 degree from the $c$ axis to the $a$ axis. We find that the sample with the largest longitudinal thermal conductivity ($kappa_{xx}$) shows the half-integer quantized thermal Hall effect expected in the Kitaev model. On the other hand, the quantized thermal Hall effect was not observed in the samples with smaller $kappa_{xx}$. We suggest that suppressing the magnetic scattering effects on the phonon thermal conduction, which broaden the field-induced gap protecting the chiral edge current of the Majorana fermions, is important to observe the quantized thermal Hall effect.
Raman scattering has been employed to investigate lattice and magnetic excitations of the honeycomb Kitaev material $alpha$-RuCl$_3$ and its Heisenberg counterpart CrCl$_3$. Our phonon Raman spectra give evidence for a first-order structural transition from a monoclinic to a rhombohedral structure for both compounds. Significantly, only $alpha$-RuCl$_3$ features a large thermal hysteresis, consistent with the formation of a wide phase of coexistence. In the related temperature interval of $70-170$ K, we observe a hysteretic behavior of magnetic excitations as well. The stronger magnetic response in the rhombohedral compared to the monoclinic phase evidences a coupling between the crystallographic structure and low-energy magnetic response. Our results demonstrate that the Kitaev magnetism concomitant with fractionalized excitations is susceptible to small variations of bonding geometry.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا