Precision measurements of the scintillation pulse shape for low-energy recoils in liquid xenon


Abstract in English

We present measurements of the scintillation pulse shape in liquid xenon for nuclear recoils (NR) and electronic recoils (ER) at electric fields of 0 to 0.5 kV/cm for energies $<$ 15 keV and $<$ 70 keV electron-equivalent, respectively. The average pulse shapes are well-described by an effective model with two exponential decay components, where both decay times are fit parameters. We find significant broadening of the pulse for ER due to delayed luminescence from the recombination process. In addition to the effective model, we fit a model describing the recombination luminescence for ER at zero field and obtain good agreement. We estimate the best performance of a combined S2/S1 and pulse shape ER/NR discrimination and show that even with 2 ns time resolution, the improvement over S2/S1 discrimination alone is marginal, so that pulse shape discrimination will likely not be useful for future dual-phase liquid xenon experiments looking for elastic dark matter recoil interactions.

Download