No Arabic abstract
An idea for an application of the quantum annealing mechanism to construct a projection measurement in a collective space is proposed. We use the annealing mechanism to drive the pointer degree of freedom associated with the measurement process. The parameters in its problem Hamiltonian is given not as classical variables but as quantum variables (states). By additionally introducing successive short interactions so that the back reaction to the quantum state (to be measured) can be controlled, we invent a quantum mechanically parametrized quantum annealing process. Applying to a particular problem of discrimination of two collective states , we find that the process by the quantum mechanically parametrized annealing arrives at projection measurement in the collective space when the parametrizing quantum variables themselves are orthogonal (or distinguishable).
Recently, there has been a renewed interest in the quantification of coherence or other coherence-like concepts within the framework of quantum resource theory. However, rigorously defined or not, the notion of coherence or decoherence has already been used by the community for decades since the advent of quantum theory. Intuitively, the definitions of coherence and decoherence should be the two sides of the same coin. Therefore, a natural question is raised: how can the conventional decoherence processes, such as the von Neumann-L{u}ders (projective) measurement postulation or partially dephasing channels, fit into the bigger picture of the recently established theoretic framework? Here we show that the state collapse rules of the von Neumann or L{u}ders-type measurements, as special cases of genuinely incoherent operations (GIO), are consistent with the resource theories of quantum coherence. New hierarchical measures of coherence are proposed for the L{u}ders-type measurement and their relationship with measurement-dependent discord is addressed. Moreover, utilizing the fixed point theory for $C^ast$-algebra, we prove that GIO indeed represent a particular type of partially dephasing (phase-damping) channels which have a matrix representation based on the Schur product. By virtue of the Stinesprings dilation theorem, the physical realizations of incoherent operations are investigated in detail and we find that GIO in fact constitute the core of strictly incoherent operations (SIO) and generally incoherent operations (IO) and the unspeakable notion of coherence induced by GIO can be transferred to the theories of speakable coherence by the corresponding permutation or relabeling operators.
Reinforcement learning has witnessed recent applications to a variety of tasks in quantum programming. The underlying assumption is that those tasks could be modeled as Markov Decision Processes (MDPs). Here, we investigate the feasibility of this assumption by exploring its consequences for two of the simplest tasks in quantum programming: state preparation and gate compilation. By forming discrete MDPs, focusing exclusively on the single-qubit case, we solve for the optimal policy exactly through policy iteration. We find optimal paths that correspond to the shortest possible sequence of gates to prepare a state, or compile a gate, up to some target accuracy. As an example, we find sequences of H and T gates with length as small as 11 producing ~99% fidelity for states of the form (HT)^{n} |0> with values as large as n=10^{10}. This work provides strong evidence that reinforcement learning can be used for optimal state preparation and gate compilation for larger qubit spaces.
We propose the gentle measurement principle (GMP) as one of the principles at the foundation of quantum mechanics. It asserts that if a set of states can be distinguished with high probability, they can be distinguished by a measurement that leaves the states almost invariant, including correlation with a reference system. While GMP is satisfied in both classical and quantum theories, we show, within the framework of general probabilistic theories, that it imposes strong restrictions on the law of physics. First, the measurement uncertainty of a pair of observables cannot be significantly larger than the preparation uncertainty. Consequently, the strength of the CHSH nonlocality cannot be maximal. The parameter in the stretched quantum theory, a family of general probabilistic theories that includes the quantum theory, is also limited. Second, the conditional entropy defined in terms of a data compression theorem satisfies the chain inequality. Not only does it imply information causality and Tsirelsons bound, but it singles out the quantum theory from the stretched one. All these results show that GMP would be one of the principles at the heart of quantum mechanics.
New annealing schedules for quantum annealing are proposed based on the adiabatic theorem. These schedules exhibit faster decrease of the excitation probability than a linear schedule. To derive this conclusion, the asymptotic form of the excitation probability for quantum annealing is explicitly obtained in the limit of long annealing time. Its first-order term, which is inversely proportional to the square of the annealing time, is shown to be determined only by the information at the initial and final times. Our annealing schedules make it possible to drop this term, thus leading to a higher order (smaller) excitation probability. We verify these results by solving numerically the time-dependent Schrodinger equation for small size systems
Entanglement lies at the core of quantum algorithms designed to solve problems that are intractable by classical approaches. One such algorithm, quantum annealing (QA), provides a promising path to a practical quantum processor. We have built a series of scalable QA processors consisting of networks of manufactured interacting spins (qubits). Here, we use qubit tunneling spectroscopy to measure the energy eigenspectrum of two- and eight-qubit systems within one such processor, demonstrating quantum coherence in these systems. We present experimental evidence that, during a critical portion of QA, the qubits become entangled and that entanglement persists even as these systems reach equilibrium with a thermal environment. Our results provide an encouraging sign that QA is a viable technology for large-scale quantum computing.