Do you want to publish a course? Click here

Split graphs: combinatorial species and asymptotics

81   0   0.0 ( 0 )
 Added by Justin Troyka
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

A split graph is a graph whose vertices can be partitioned into a clique and a stable set. We investigate the combinatorial species of split graphs, providing species-theoretic generalizations of enumerative results due to Bina and Pv{r}ibil (2015), Cheng, Collins, and Trenk (2016), and Collins and Trenk (2018). In both the labeled and unlabeled cases, we give asymptotic results on the number of split graphs, of unbalanced split graphs, and of bicolored graphs, including proving the conjecture of Cheng, Collins, and Trenk (2016) that almost all split graphs are balanced.



rate research

Read More

In enumerative combinatorics, it is often a goal to enumerate both labeled and unlabeled structures of a given type. The theory of combinatorial species is a novel toolset which provides a rigorous foundation for dealing with the distinction between labeled and unlabeled structures. The cycle index series of a species encodes the labeled and unlabeled enumerative data of that species. Moreover, by using species operations, we are able to solve for the cycle index series of one species in terms of other, known cycle indices of other species. Section 3 is an exposition of species theory and Section 4 is an enumeration of point-determining bipartite graphs using this toolset. In Section 5, we extend a result about point-determining graphs to a similar result for point-determining {Phi}-graphs, where {Phi} is a class of graphs with certain properties. Finally, Appendix A is an expository on species computation using the software Sage [9] and Appendix B uses Sage to calculate the cycle index series of point-determining bipartite graphs.
A graph is locally irregular if any pair of adjacent vertices have distinct degrees. A locally irregular decomposition of a graph $G$ is a decomposition $mathcal{D}$ of $G$ such that every subgraph $H in mathcal{D}$ is locally irregular. A graph is said to be decomposable if it admits a locally irregular decomposition. We prove that any decomposable split graph can be decomposed into at most three locally irregular subgraphs and we characterize all split graphs whose decomposition can be into one, two or three locally irregular subgraphs.
There is a long line of research in the literature dedicated to word-representable graphs, which generalize several important classes of graphs. However, not much is known about word-representability of split graphs, another important class of graphs. In this paper, we show that threshold graphs, a subclass of split graphs, are word-representable. Further, we prove a number of general theorems on word-representable split graphs, and use them to characterize computationally such graphs with cliques of size 5 in terms of 9 forbidden subgraphs, thus extending the known characterization for word-representable split graphs with cliques of size 4. Moreover, we use split graphs, and also provide an alternative solution, to show that gluing two word-representable graphs in any clique of size at least 2 may, or may not, result in a word-representable graph. The two surprisingly simple solutions provided by us answer a question that was open for about ten years.
128 - Ji Li 2009
In this paper, we enumerate prime graphs with respect to the Cartesian multiplication of graphs. We use the unique factorization of a connected graph into the product of prime graphs given by Sabidussi to find explicit formulas for labeled and unlabeled prime graphs. In the case of species, we construct the exponential composition of species based on the arithmetic product of species of Maia and Mendez and the quotient species, and express the species of connected graphs as the exponential composition of the species of prime graphs.
Consider the collection of hyperplanes in $mathbb{R}^n$ whose defining equations are given by ${x_i + x_j = 0mid 1leq i<jleq n}$. This arrangement is called the threshold arrangement since its regions are in bijection with labeled threshold graphs on $n$ vertices. Zaslavskys theorem implies that the number of regions of this arrangement is the sum of coefficients of the characteristic polynomial of the arrangement. In the present article we give a combinatorial meaning to these coefficients as the number of labeled threshold graphs with a certain property, thus answering a question posed by Stanley.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا