Do you want to publish a course? Click here

Superconductivity in Layered Pnictides BaRh2P2 and BaIr2P2

364   0   0.0 ( 0 )
 Added by Daigorou Hirai
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bulk superconductivity was discovered in BaRh2P2 (Tc = 1.0 K) and BaIr2P2 (Tc = 2.1 K), which are isostructural to (Ba,K)Fe2As2, indicative of the appearance of superconductivity over a wide variety of layered transition metal pnictides. The electronic specific heat coefficient gamma in the normal state, 9.75 and 6.86 mJ/mol K2 for BaRh2P2 and BaIr2P2 respectively, indicate that the electronic density of states of these two compounds are moderately large but smaller than those of Fe pnictide superconductors. The Wilson ratio close to 1 indeed implies the absence of strong electron correlations and magnetic fluctuations unlike Fe pnictides.



rate research

Read More

83 - Kang Zhao , Qing-Ge Mu , Tong Liu 2018
By replacing the alkali element in the newly discovered K2Mo3As3 superconductor, we successfully synthesized ternary molybdenum pnictides Rb2Mo3As3 and Cs2Mo3As3 through solid state reaction method. Powder X-ray diffraction analysis reveals the same quasi-one-dimensional (Q1D) hexagonal crystal structure and space group of P-6m2 (No. 187) as K2Mo3As3. The refined lattice parameters are a = 10.432 (1) {AA}, c = 4.4615 (6) {AA} for Rb2Mo3As3 and a = 10.7405 (6) {AA}, c = 4.4654 (5) {AA} for Cs2Mo3As3. Electrical resistivity and magnetic susceptibility characterizations exhibit the occurrence of superconductivity in both compounds with the onset Tc at 10.6 K and 11.5 K for Rb2Mo3As3 and Cs2Mo3As3 respectively, which exhibit weak negative chemical pressure effect in these A2Mo3As3 (A = K, Rb, Cs) superconductors contrary to the isostructural A2Cr3As3 superconductors. More interestingly, the Cs2Mo3As3 superconductor exhibits much higher upper critical field around 60 T at zero temperature. The discovery of these MoAs/CrAs-based superconductors provide a unique platform for the study of exotic superconductivity correlated with both 3d and 4d electrons in these Q1D compounds.
150 - Shruti , V. K. Maurya , P. Neha 2015
Strontium intercalation between van der Waals bonded layers of topological insulator Bi2Se3 is found to induce superconductivity with a maximum Tc of 2.9 K. Transport measurement on single crystal of optimally doped sample Sr0.1Bi2Se3 shows weak anisotropy (1.5) and upper critical field Hc2(0) equals to 2.1 T for magnetic field applied per-pendicular to c -axis of the sample. The Ginzburg-Landau coherence lengths are Xi-ab = 15.3 {AA} and Xi_c = 10.2 {AA}. The lower critical field and zero temperature penetration depth Lambda(0) are estimated to be 0.35 mT and 1550 nm respectively. Hall and Seebeck measurements confirm the dominance of electronic conduction and the carrier concentration is surprisingly low (n = 1.85 x 10^19 cm-3) at 10 K indicating possibility of unconventional superconductivity.
The structure of the layered transition-metal Borides $A$B$_2$ ($A =$ Os, Ru) is built up by alternating $T$ and B layers with the B layers forming a puckered honeycomb. Here we report superconducting properties of RuB$_2$ with a $T_c approx 1.5$K using measurements of the magnetic susceptibility versus temperature $T$, magnetization $M$ versus magnetic field $H$, resistivity versus $T$, and heat capacity versus $T$ at various $H$. We observe a reduced heat capacity anomaly at $T_c$ given by $Delta C/gamma T_c approx 1.1$ suggesting multi-gap superconductivity. Strong support for this is obtained by the successful fitting of the electronic specific heat data to a two-gap model with gap values $Delta_1/k_BT_c approx 1.88$ and $Delta_2/k_BT_c approx 1.13$. Additionally, $M$ versus $H$ measurements reveal a behaviour consistent with Type-I superconductivity. This is confirmed by estimates of the Ginzburg-Landau parameter $kappa approx 0.1$--$0.66$. These results strongly suggest multi-gap Type-I superconductivity in RuB$_2$. We also calculate the band structure and obtain the Fermi surface for RuB$_2$. The Fermi surface consists of one quasi-two-dimensional sheet and two nested ellipsoidal sheets very similar to OsB$_2$. An additional small $4^{rm th}$ sheet is also found for RuB$_2$. RuB$_2$ could thus be a rare example of a multi-gap Type-I superconductor.
Binary ruthenium pnictides, RuP and RuAs, with an orthorhombic MnP structure, were found to show a metal to a non-magnetic insulator transition at TMI = 270 K and 200 K, respectively. In the metallic region above TMI, a structural phase transition, accompanied by a weak anomaly in the resistivity and the magnetic susceptibility, indicative of a pseudo-gap formation, was identified at Ts = 330 K and 280 K, respectively. These two transitions were suppressed by substituting Ru with Rh. We found superconductivity with a maximum Tc = 3.7 K and Tc =1.8 K in a narrow composition range around the critical point for the pseudo-gap phase, Rh content xc = 0.45 and xc = 0.25 for Ru1-xRhxP and Ru1-xRhxAs, respectively, which may provide us with a novel non-magnetic route to superconductivity at a quantum critical point.
163 - Yu Liu , Ran Ang , Wenjian Lu 2013
Layered transition-metal dichalcogenides 1T-TaS2-xSex (0<=x<=2) single crystals have been successfully fabricated by using a chemical vapor transport technique in which Ta locates in octahedral coordination with S and Se atoms. This is the first superconducting example by the substitution of S site, which violates an initial rule based on the fact that superconductivity merely emerges in 1T-TaS2 by applying the high pressure or substitution of Ta site. We demonstrate the appearance of a series of electronic states in 1T-TaS2-xSex with Se content. Namely, the Mott phase melts into a nearly commensurate charge-density-wave (NCCDW) phase, superconductivity in a wide x range develops within the NCCDW state, and finally commensurate charge-density-wave (CCDW) phase reproduces for heavy Se content. The present results reveal that superconductivity is only characterized by robust Ta 5d band, demonstrating the universal nature in 1T-TaS2 systems that superconductivity and NCCDW phase coexist in the real space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا