Do you want to publish a course? Click here

Setting up a Reinforcement Learning Task with a Real-World Robot

564   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Reinforcement learning is a promising approach to developing hard-to-engineer adaptive solutions for complex and diverse robotic tasks. However, learning with real-world robots is often unreliable and difficult, which resulted in their low adoption in reinforcement learning research. This difficulty is worsened by the lack of guidelines for setting up learning tasks with robots. In this work, we develop a learning task with a UR5 robotic arm to bring to light some key elements of a task setup and study their contributions to the challenges with robots. We find that learning performance can be highly sensitive to the setup, and thus oversights and omissions in setup details can make effective learning, reproducibility, and fair comparison hard. Our study suggests some mitigating steps to help future experimenters avoid difficulties and pitfalls. We show that highly reliable and repeatable experiments can be performed in our setup, indicating the possibility of reinforcement learning research extensively based on real-world robots.



rate research

Read More

Reinforcement learning (RL) has proven its worth in a series of artificial domains, and is beginning to show some successes in real-world scenarios. However, much of the research advances in RL are often hard to leverage in real-world systems due to a series of assumptions that are rarely satisfied in practice. We present a set of nine unique challenges that must be addressed to productionize RL to real world problems. For each of these challenges, we specify the exact meaning of the challenge, present some approaches from the literature, and specify some metrics for evaluating that challenge. An approach that addresses all nine challenges would be applicable to a large number of real world problems. We also present an example domain that has been modified to present these challenges as a testbed for practical RL research.
Through many recent successes in simulation, model-free reinforcement learning has emerged as a promising approach to solving continuous control robotic tasks. The research community is now able to reproduce, analyze and build quickly on these results due to open source implementations of learning algorithms and simulated benchmark tasks. To carry forward these successes to real-world applications, it is crucial to withhold utilizing the unique advantages of simulations that do not transfer to the real world and experiment directly with physical robots. However, reinforcement learning research with physical robots faces substantial resistance due to the lack of benchmark tasks and supporting source code. In this work, we introduce several reinforcement learning tasks with multiple commercially available robots that present varying levels of learning difficulty, setup, and repeatability. On these tasks, we test the learning performance of off-the-shelf implementations of four reinforcement learning algorithms and analyze sensitivity to their hyper-parameters to determine their readiness for applications in various real-world tasks. Our results show that with a careful setup of the task interface and computations, some of these implementations can be readily applicable to physical robots. We find that state-of-the-art learning algorithms are highly sensitive to their hyper-parameters and their relative ordering does not transfer across tasks, indicating the necessity of re-tuning them for each task for best performance. On the other hand, the best hyper-parameter configuration from one task may often result in effective learning on held-out tasks even with different robots, providing a reasonable default. We make the benchmark tasks publicly available to enhance reproducibility in real-world reinforcement learning.
Meta-reinforcement learning algorithms can enable robots to acquire new skills much more quickly, by leveraging prior experience to learn how to learn. However, much of the current research on meta-reinforcement learning focuses on task distributions that are very narrow. For example, a commonly used meta-reinforcement learning benchmark uses different running velocities for a simulated robot as different tasks. When policies are meta-trained on such narrow task distributions, they cannot possibly generalize to more quickly acquire entirely new tasks. Therefore, if the aim of these methods is to enable faster acquisition of entirely new behaviors, we must evaluate them on task distributions that are sufficiently broad to enable generalization to new behaviors. In this paper, we propose an open-source simulated benchmark for meta-reinforcement learning and multi-task learning consisting of 50 distinct robotic manipulation tasks. Our aim is to make it possible to develop algorithms that generalize to accelerate the acquisition of entirely new, held-out tasks. We evaluate 7 state-of-the-art meta-reinforcement learning and multi-task learning algorithms on these tasks. Surprisingly, while each task and its variations (e.g., with different object positions) can be learned with reasonable success, these algorithms struggle to learn with multiple tasks at the same time, even with as few as ten distinct training tasks. Our analysis and open-source environments pave the way for future research in multi-task learning and meta-learning that can enable meaningful generalization, thereby unlocking the full potential of these methods.
477 - Ruihan Yang , Huazhe Xu , Yi Wu 2020
Multi-task learning is a very challenging problem in reinforcement learning. While training multiple tasks jointly allow the policies to share parameters across different tasks, the optimization problem becomes non-trivial: It remains unclear what parameters in the network should be reused across tasks, and how the gradients from different tasks may interfere with each other. Thus, instead of naively sharing parameters across tasks, we introduce an explicit modularization technique on policy representation to alleviate this optimization issue. Given a base policy network, we design a routing network which estimates different routing strategies to reconfigure the base network for each task. Instead of directly selecting routes for each task, our task-specific policy uses a method called soft modularization to softly combine all the possible routes, which makes it suitable for sequential tasks. We experiment with various robotics manipulation tasks in simulation and show our method improves both sample efficiency and performance over strong baselines by a large margin.
The benefit of multi-task learning over single-task learning relies on the ability to use relations across tasks to improve performance on any single task. While sharing representations is an important mechanism to share information across tasks, its success depends on how well the structure underlying the tasks is captured. In some real-world situations, we have access to metadata, or additional information about a task, that may not provide any new insight in the context of a single task setup alone but inform relations across multiple tasks. While this metadata can be useful for improving multi-task learning performance, effectively incorporating it can be an additional challenge. We posit that an efficient approach to knowledge transfer is through the use of multiple context-dependent, composable representations shared across a family of tasks. In this framework, metadata can help to learn interpretable representations and provide the context to inform which representations to compose and how to compose them. We use the proposed approach to obtain state-of-the-art results in Meta-World, a challenging multi-task benchmark consisting of 50 distinct robotic manipulation tasks.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا