Do you want to publish a course? Click here

High temperature magnetism and microstructure of semiconducting ferromagnetic alloy (GaSb)$_{1-x}$(MnSb)$_{x}$

69   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have studied the properties of relatively thick (about 120 nm) magnetic composite films grown by pulsed laser deposition method using (GaSb)$_{0.59}$(MnSb)$_{0.41}$ eutectic compound as a target for sputtering. For the studied films we have observed ferromagnetism and anomalous Hall effect above the room temperature, it manifests the presence of spin-polarized carriers. Electron microscopy, atomic and magnetic force microscopy results suggests that films under study have homogenous columnar structure in the bulk while MnSb inclusions accumulate near its surface. This is in good agreement with high mobility values of charge carriers. Based on our data we conclude that room temperature magnetic and magnetotransport properties of the films are defined by MnSb inclusions.



rate research

Read More

A set of thin film Mn$_x$Si$_{1-x}$ alloy samples with different manganese concentration x = 0.44 - 0.63 grown by the pulsed laser deposition (PLD) method onto the Al$_2$O$_3$(0001) substrate was investigated in the temperature range 4 - 300 K using ferromagnetic resonance (FMR) measurements in the wide range of frequencies (f = 7 - 60 GHz) and magnetic fields (H = 0 - 30 kOe). For samples with x = 0.52 - 0.55, FMR data show clear evidence of ferromagnetism with high Curie temperatures T$_text{C}$ ~ 300 K. These samples demonstrate complex and unusual character of magnetic anisotropy described in the frame of phenomenological model as a combination of the essential second order easy plane anisotropy contribution and the additional forth order uniaxial anisotropy contribution with easy direction normal to the film plane. We explain the obtained results by a polycrystalline (mosaic) structure of the films caused by the film-substrate lattice mismatch. The existence of extra strains at the crystallite boundaries leads to an essential inhomogeneous magnetic anisotropy in the film plane.
A detailed study of the magnetic and transport properties of Si1-xMnx (X = 0.35) films is presented. We observe the anomalous Hall effect (AHE) in these films up to room temperature. The results of the magnetic measurements and the AHE data are consistent and demonstrate the existence of long-range ferromagnetic (FM) order in the systems under study. A correlation of the AHE and the magnetic properties of Si1-xMnx (X = 0.35) films with their conductivity and substrate type is shown. A theoretical model based on the idea of a two-phase magnetic material, in which molecular clusters with localized magnetic moments are embedded in the matrix of a weak itinerant ferromagnet, is discussed. The long-range ferromagnetic order at high temperatures is mainly due to the Stoner enhancement of the exchange coupling between clusters through thermal spin fluctuations (paramagnons) in the matrix. Theoretical predictions and experimental data are in good qualitative agreement.
Gate-tunable high-mobility InSb/In_{1-x}Al_{x}Sb quantum wells (QWs) grown on GaAs substrates are reported. The QW two-dimensional electron gas (2DEG) channel mobility in excess of 200,000 cm^{2}/Vs is measured at T=1.8K. In asymmetrically remote-doped samples with an HfO_{2} gate dielectric formed by atomic layer deposition, parallel conduction is eliminated and complete 2DEG channel depletion is reached with minimal hysteresis in gate bias response of the 2DEG electron density. The integer quantum Hall effect with Landau level filling factor down to 1 is observed. A high-transparency non-alloyed Ohmic contact to the 2DEG with contact resistance below 1{Omega} cdot mm is achieved at 1.8K.
Cubic Half-Heusler Cu$_{1-x}$Co$_x$MnSb (0 $leq$ $x$ $leq$ 0.1) compounds have been investigated both experimentally and theoretically for their magnetic, transport and electronic properties in search of possible half metallic antiferromagnetism. The systems (Cu,Co)MnSb are of particular interest as the end member alloys CuMnSb and CoMnSb are semi metallic (SM) antiferromagnetic (AFM) and half metallic (HM) ferromagnetic (FM), respectively. Clearly, Co-doping at the Cu-site of CuMnSb introduces changes in the carrier concentration at the Fermi level that may lead to half-metallic ground state but there remains a persistent controversy whether the AFM to FM transition occurs simultaneously. Our experimental results reveal that the AFM to FM magnetic transition occurs through a percolation mechanism where Co-substitution gradually suppresses the AFM phase and forces FM polarization around every dopant cobalt. As a result a mixed magnetic phase is realized within this composition range while a nearly HM band structure is developed already at the 10% Co-doping. Absence of T$^2$ dependence in the resistivity variation at low T-region serves as an indirect proof of opening up an energy gap at the Fermi surface in one of the spin channels. This is further corroborated by the ab-initio electronic structure calculations that suggests a nearly ferromagnetic half-metallic ground state is stabilized by Sb-p holes produced upon Co doping.
237 - S. Sharma 2009
Using state-of-the-art first-principles calculations we study the magnetic behaviour of CeOFeAs. We find the Ce layer moments oriented perpendicular to those of the Fe layers. An analysis of incommensurate magnetic structures reveals that the Ce-Ce magnetic coupling is rather weak with, however, a strong Fe-Ce coupling. Comparison of the origin of the tetragonal to orthorhombic structural distortion in CeOFeAs and LaOFeAs show marked differences; in CeOFeAs the distortion is stabilized by a lowering of spectral weight at the Fermi level, while in LaOFeAs by a reduction in magnetic frustration. Finally, we investigate the impact of electron doping upon CeOFeAs and show that while the ground state Fe moment remains largely unchanged by doping, the stability of magnetic order goes to zero at a doping that corresponds well to the vanishing of the Neel temperature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا