Online Controlled Experiments for Personalised e-Commerce Strategies: Design, Challenges, and Pitfalls


Abstract in English

Online controlled experiments are the primary tool for measuring the causal impact of product changes in digital businesses. It is increasingly common for digital products and services to interact with customers in a personalised way. Using online controlled experiments to optimise personalised interaction strategies is challenging because the usual assumption of statistically equivalent user groups is violated. Additionally, challenges are introduced by users qualifying for strategies based on dynamic, stochastic attributes. Traditional A/B tests can salvage statistical equivalence by pre-allocating users to control and exposed groups, but this dilutes the experimental metrics and reduces the test power. We present a stacked incrementality test framework that addresses problems with running online experiments for personalised user strategies. We derive bounds that show that our framework is superior to the best simple A/B test given enough users and that this condition is easily met for large scale online experiments. In addition, we provide a test power calculator and describe a selection of pitfalls and lessons learnt from our experience using it.

Download