Do you want to publish a course? Click here

Thick turbulent gas disks with magnetocentrifugal winds in active galactic nuclei - Model infrared emission and optical polarization

62   0   0.0 ( 0 )
 Added by Bernd Vollmer
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

(Abridged) Infrared high-resolution imaging and interferometry have shown that the dust distribution is frequently elongated along the polar direction of an AGN. To explain these findings, we developed a model scenario for the inner ~30 pc of an AGN. We assume a rotating thick gas disk between about one and ten parsec. External gas accretion adds mass and injects energy via gas compression into this gas disk and drives turbulence. Our disks are assumed to be strongly magnetized via equipartition between the turbulent gas pressure and the energy density of the magnetic field. In a second step, we built three dimensional density cubes based on the analytical model, illuminated them with a central source, and made radiative transfer calculations. In a third step, we calculated MIR visibility amplitudes and compared them to available interferometric observations. We show that magnetocentrifugal winds starting from a thin and thick gas disk are viable in active galaxy centers. Once the wind is launched, it is responsible for the transport of angular momentum and the gas disk can become thin. The outflow scenario can account for the elongated dust structures, outer edges of the thin maser disks, and molecular outflows observed in local AGN. The models reproduce the observed terminal wind velocities, the scatter of the MIR/intrinsic X-ray correlation, and point source fractions. An application of the model to the Circinus Galaxy and NGC 1068 shows that the IR SED, available MIR interferometric observations, and optical polarization can be reproduced in a satisfactory way, provided that (i) a puff-up at the inner edge of the thin disk is present and (ii) a local screen with an optical depth of tau_V 20 in form of a local gas filament and/or a warp of the thick disk hide a significant fraction of both nuclei.



rate research

Read More

In order to better understand how active galactic nuclei (AGN) effect the interstellar media of their host galaxies, we perform a meta-analysis of the CO emission for a sample of $z=0.01-4$ galaxies from the literature with existing CO detections and well-constrained AGN contributions to the infrared (67 galaxies). Using either Spitzer/IRS mid-IR spectroscopy or Spitzer+Herschel colors we determine the fraction of the infrared luminosity in each galaxy that can be attributed to heating by the AGN or stars. We calculate new average CO spectral line ratios (primarily from Carilli & Walter 2013) to uniformly scale the higher-$J$ CO detections to the ground state and accurately determine our samples molecular gas masses. We do not find significant differences in the gas depletion timescales/star formation efficiencies (SFEs) as a function of the mid-infrared AGN strength ($f_{rm AGN}({rm MIR})$ or $L_{rm IR} ({rm AGN})$), which indicates that the presence of an IR-bright AGN is not a sufficient sign-post of galaxy quenching. We also find that the dust-to-gas ratio is consistent for all sources, regardless of AGN emission, redshift, or $L_{rm IR}$, indicating that dust is likely a reliable tracer of gas mass for massive dusty galaxies (albeit with a large degree of scatter). Lastly, if we classify galaxies as either AGN or star formation dominated, we do not find a robust statistically significant difference between their CO excitation.
This letter presents a revised radiative transfer model for the infrared (IR) emission of active galactic nuclei (AGN). While current models assume that the IR is emitted from a dusty torus in the equatorial plane of the AGN, spatially resolved observations indicate that the majority of the IR emission from 100 pc in many AGN originates from the polar region, contradicting classical torus models. The new model CAT3D-WIND builds upon the suggestion that the dusty gas around the AGN consists of an inflowing disk and an outflowing wind. Here, it is demonstrated that (1) such disk+wind models cover overall a similar parameter range of observed spectral features in the IR as classical clumpy torus models, e.g. the silicate feature strengths and mid-IR spectral slopes, (2) they reproduce the 3-5{mu}m bump observed in many type 1 AGN unlike torus models, and (3) they are able to explain polar emission features seen in IR interferometry, even for type 1 AGN at relatively low inclination, as demonstrated for NGC3783. These characteristics make it possible to reconcile radiative transfer models with observations and provide further evidence of a two-component parsec-scaled dusty medium around AGN: the disk gives rise to the 3-5{mu}m near-IR component, while the wind produces the mid-IR emission. The model SEDs will be made available for download.
We combine new (NGC 1275, NGC 4151, and NGC 5506) and previously published (Cygnus A, Mrk 231, and NGC 1068) sub-arcsecond resolution mid-infrared (MIR; 8-13 $mu$m) imaging- and spectro-polarimetric observations of six Seyfert galaxies using CanariCam on the 10.4-m Gran Telescopio CANARIAS. These observations reveal a diverse set of physical processes responsible for the nuclear polarization, and permit characterization of the origin of the MIR nuclear polarimetric signature of active galactic nuclei (AGN). For all radio quiet objects, we found that the nuclear polarization is low (<1 per cent), and the degree of polarization is often a few per cent over extended regions of the host galaxy where we have sensitivity to detect such extended emission (i.e., NGC 1068 and NGC 4151). We suggest that the higher degree of polarization previously found in lower resolution data arises only on the larger-than-nuclear scales. Only the radio-loud Cygnus A exhibits significant nuclear polarization ($sim$11 per cent), attributable to synchrotron emission from the pc-scale jet close to the core. We present polarization models that suggest that the MIR nuclear polarization for highly obscured objects arises from a self-absorbed MIR polarized clumpy torus and/or dichroism from the host galaxy, while for unabsorbed cores, MIR polarization arises from dust scattering in the torus and/or surrounding nuclear dust.
We present the first study of an Iwasawa-Taniguchi/X-ray Baldwin effect for Compton-thick active galactic nuclei (AGN). We report a statistically significant anti-correlation between the rest-frame equivalent width (EW) of the narrow core of the neutral Fe K$alpha$ fluorescence emission line, ubiquitously observed in the reflection spectra of obscured AGN, and the mid-infrared 12$,mu$m continuum luminosity (taken as a proxy for the bolometric AGN luminosity). Our sample consists of 72 Compton-thick AGN selected from pointed and deep-field observations covering a redshift range of $zsim0.0014-3.7$. We employ a Monte Carlo-based fitting method, which returns a Spearmans Rank correlation coefficient of $rho=-0.28pm0.12$, significant to 98.7% confidence. The best fit found is ${rm log}({rm EW}_{{rm Fe,K}alpha}),propto,-0.08pm0.04,{rm log}(L_{12,mu{rm m}})$, which is consistent with multiple studies of the X-ray Baldwin effect for unobscured and mildly obscured AGN. This is an unexpected result, as the Fe K$alpha$ line is conventionally thought to originate from the same region as the underlying reflection continuum, which together constitute the reflection spectrum. We discuss the implications this could have if confirmed on larger samples, including a systematic underestimation of the line of sight X-ray obscuring column density and hence the intrinsic luminosities and growth rates for the most luminous AGN.
We use mid-infrared spectroscopy of unobscured active galactic nuclei (AGNs) to reveal their native dusty environments. We concentrate on Seyfert 1 galaxies, observing a sample of 31 with the Infrared Spectrograph aboard the Spitzer Space Telescope, and compare them with 21 higher-luminosity quasar counterparts. Silicate dust reprocessing dominates the mid-infrared spectra, and we generally measure the 10 and 18 micron spectral features weakly in emission in these galaxies. The strengths of the two silicate features together are sensitive to the dust distribution. We present numerical radiative transfer calculations that distinguish between clumpy and smooth geometries, which are applicable to any central heating source, including stars as well as AGNs. In the observations, we detect the obscuring ``torus of unified AGN schemes, modeling it as compact and clumpy. We also determine that star formation increases with AGN luminosity, although the proportion of the galaxies bolometric luminosity attributable to stars decreases with AGN luminosity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا