Do you want to publish a course? Click here

High-Resolution Observations of Flares in an Arch Filament System

51   0   0.0 ( 0 )
 Added by Yingna Su
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study five sequential solar flares (SOL2015-08-07) occurring in Active Region 12396 observed with the Goode Solar Telescope (GST) at the BBSO, complemented by IRIS and SDO observations. The main flaring region is an arch filament system (AFS) consisting of multiple bundles of dark filament threads enclosed by semi-circular flare ribbons. We study the magnetic configuration and evolution of the active region by constructing coronal magnetic field models based on SDO/HMI magnetograms using two independent methods, i.e., the nonlinear force-free field (NLFFF) extrapolation and the flux rope insertion method. The models consist of multiple flux ropes with mixed signs of helicity, i.e., positive (negative) in the northern (southern) region, which is consistent with the GST observations of multiple filament bundles. The footprints of quasi-separatrix layers (QSLs) derived from the extrapolated NLFFF compare favorably with the observed flare ribbons. An interesting double-ribbon fine structure located at the east border of the AFS is consistent with the fine structure of the QSLs footprint. Moreover, magnetic field lines traced along the semi-circular footprint of a dome-like QSL surrounding the AFS are connected to the regions of significant helicity and Poynting flux injection. The maps of magnetic twist show that positive twist became dominant as time progressed, which is consistent with the injection of positive helicity before the flares. We hence conclude that these circular shaped flares are caused by 3D magnetic reconnection at the QSLs associated with the AFS possessing mixed signs of helicity.



rate research

Read More

We study the dynamics of plasma along the legs of an arch filament system (AFS) from the chromosphere to the photosphere, observed with high-cadence spectroscopic data from two ground-based solar telescopes: the GREGOR telescope (Tenerife) using the GREGOR Infrarred Spectrograph (GRIS) in the He I 10830 r{A} range and the Swedish Solar Telescope (La Palma) using the CRisp Imaging Spectro-Polarimeter to observe the Ca II 8542 r{A} and Fe I 6173 r{A} spectral lines. The temporal evolution of the draining of the plasma was followed along the legs of a single arch filament from the chromosphere to the photosphere. The average Doppler velocities inferred at the upper chromosphere from the He I 10830 r{A} triplet reach velocities up to 20-24~km~s$^{-1}$, in the lower chromosphere and upper photosphere the Doppler velocities reach up to 11~km~s$^{-1}$ and 1.5~km~s$^{-1}$ in the case of the Ca II 8542 r{A} and Si I 10827 r{A} spectral lines, respectively. The evolution of the Doppler velocities at different layers of the solar atmosphere (chromosphere and upper photosphere) shows that they follow the same LOS velocity pattern, which confirm the observational evidence that the plasma drains towards the photosphere as proposed in models of AFSs. The Doppler velocity maps inferred from the lower photospheric Ca I 10839 r{A} or Fe I 6173 r{A} spectral lines do not show the same LOS velocity pattern. Thus, there is no evidence that the plasma reaches the lower photosphere. The observations and the nonlinear force-free field extrapolations demonstrate that the magnetic field loops of the AFS rise with time. We found flow asymmetries at different footpoints of the AFS. The NLFFF values of the magnetic field strength give us a clue to explain these flow asymmetries.
We present high-resolution observations of a magnetic reconnection event in the solar atmosphere taken with the New Vacuum Solar Telescope, AIA and HMI. The reconnection event occurred between the threads of a twisted arch filament system (AFS) and coronal loops. Our observations reveal that the relaxation of the twisted AFS drives some of its threads to encounter the coronal loops, providing inflows of the reconnection. The reconnection is evidenced by flared X-shape features in the AIA images, a current-sheet-like feature apparently connecting post-reconnection loops in the halpha$+$1 AA images, small-scale magnetic cancellation in the HMI magnetograms and flows with speeds of 40--80 km/s along the coronal loops. The post-reconnection coronal loops seen in AIA 94 AA passband appear to remain bright for a relatively long time, suggesting that they have been heated and/or filled up by dense plasmas previously stored in the AFS threads. Our observations suggest that the twisted magnetic system could release its free magnetic energy into the upper solar atmosphere through reconnection processes. While the plasma pressure in the reconnecting flux tubes are significantly different, the reconfiguration of field lines could result in transferring of mass among them and induce heating therein.
Solar flares are due to the catastrophic release of magnetic energy in the Suns corona, resulting in plasma heating, mass motions, particle acceleration, and radiation emitted from radio to $gamma$-ray wavelengths. They are associated with global coronal eruptions of plasma into the interplanetary medium---coronal mass ejections---that can result in a variety of space weather phenomena. Flares release energy over a vast range of energies, from $sim!10^{23}$ ergs (nanoflares) to more than $10^{32}$ ergs. Solar flares are a phenomenon of general astrophysical interest, allowing detailed study of magnetic energy release, eruptive processes, shock formation and propagation, particle acceleration and transport, and radiative processes. Observations at radio wavelengths offer unique diagnostics of the physics of flares. To fully exploit these diagnostics requires the means of performing time-resolved imaging spectropolarimetry. Recent observations with the Jansky Very Large Array (JVLA) and the Expanded Owens Valley Solar Array (EOVSA), supported by extensive development in forward modeling, have demonstrated the power of the approach. The ngVLA has the potential to bring our understanding of flare processes to a new level through its combination of high spatial resolution, broad frequency range, and imaging dynamic range---especially when used in concert with multi-wavelength observations and data at hard X-ray energies.
Recent observations of sunspots umbra suggested that it may be finely structured at a sub-arcsecond scale representing a mix of hot and cool plasma elements. In this study we report the first detailed observations of the umbral spikes, which are cool jet-like structures seen in the chromosphere of an umbra. The spikes are cone-shaped features with a typical height of 0.5-1.0 Mm and a width of about 0.1 Mm. Their life time ranges from 2 to 3 min and they tend to re-appear at the same location. The spikes are not associated with photospheric umbral dots and they rather tend to occur above darkest parts of the umbra, where magnetic fields are strongest. The spikes exhibit up and down oscillatory motions and their spectral evolution suggests that they might be driven by upward propagating shocks generated by photospheric oscillations. It is worth noting that triggering of the running penumbral waves seems to occur during the interval when the spikes reach their maximum height.
The emergence of active regions (ARs) closely relates to the solar dynamo and the dynamical atmospheric phenomena.With high-resolution and long-lasting observations from the New Vacuum Solar Telescope, we report a new dynamic activity phenomenon named fan-shaped activity (FSA) in the emerging phase of NOAA AR 12700. The FSAs are clearly observed at Ha wavelength and are closely related to the dynamics of the adjacent arch filament system (AFS), including threads deformation and materials downward motions. On 2018 February 26, the two most representative FSAs appeared around 05:21 UT and 06:03 UT, respectively, and they firstly ascended and then decayed in around 10 minutes. At the ascending phase, accompanied by the uplifting of an adjacent AFS, each FSA launches up at one end of the AFS and extends for up to 11 Mm. At the decaying phase, the FSA gradually vanishes, and materials downflows towards the other end of the AFS are detected. After checking the evolution of the magnetic fields of AR 12700, we find that each FSA is located between the end of an AFS and an adjacent magnetic patch with the same polarity and launches at the onset of the collision and compression between these two magnetic patches. We propose that the collision lifts up the AFS, and then the initially compact AFS laterally expands, resulting in the formation of FSA. A cartoon model is proposed to depict the activities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا