We show that the three-dimensional map between fermions and bosons at finite temperature generalises for all odd dimensions $d>3$. We further argue that such a map has a nontrivial large $d$ limit. Evidence comes from studying the gap equations, the free energies and the partition functions of the $U(N)$ Gross-Neveu and CP$^{N-1}$ models for odd $dgeq 3$ in the presence of imaginary chemical potential. We find that the gap equations and the free energies can be written in terms of the Bloch-Wigner-Ramakrishnan $D_d(z)$ functions analysed by Zagier. Since $D_2(z)$ gives the volume of ideal tetrahedra in 3$d$ hyperbolic space our three-dimensional results are related to resent studies of complex Chern-Simons theories, while for $d>3$ they yield corresponding higher dimensional generalizations. As a spinoff, we observe that particular complex saddles of the partition functions correspond to the zeros and the extrema of the Clausen functions $Cl_d(theta)$ with odd and even index $d$ respectively. These saddles lie on the unit circle at positions remarkably well approximated by a sequence of rational multiples of $pi$.