Do you want to publish a course? Click here

Galactic Rotation from Cepheids with Gaia DR2 and Effects of Non-Axisymmetry

88   0   0.0 ( 0 )
 Added by Daisuke Kawata
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We apply a simple axisymmetric disc model to 218 Galactic Cepheids whose accurate measurements of the distance and velocities are obtained by cross-matching an existing Cepheids catalogue with the Gaia DR2 data. Our model fit determines the local centrifugal speed, $V_mathrm{c}$ $-$ defined as the rotation speed required to balance the local radial gravitational force $-$ at the Suns location to be $V_{c}(R_0)=236pm 3$ km s$^{-1}$ and the Suns azimuthal and radial peculiar motions to be $V_{odot}=12.4pm0.7$ km s$^{-1}$ and $U_{odot}=7.7pm0.9$ km s$^{-1}$, respectively. These results are obtained with strong priors on the solar radius, $R_0=8.2pm0.1$ kpc, and Suns angular rotation velocity, $Omega_{odot}=30.24pm0.12$ km s$^{-1}$ kpc$^{-1}$. We also applied the axisymmetric model to mock data from an N-body/hydrodynamic simulation of a Milky Way-like galaxy with a bar and spiral arms. We find that our axisymmetric model fit to the young stars recovers the local centrifugal speed reasonably well, even in the face of significant non-axisymmetry. However, the local centrifugal speed determined from our Cepheid sample could suffer from systematic uncertainty as large as 6 km s$^{-1}$.

rate research

Read More

To construct the rotation curve of the Galaxy, classical Cepheids with proper motions, parallaxes and line-of-sight velocities from the Gaia DR2 Catalog are used in large part. The working sample formed from literature data contains about 800 Cepheids with estimates of their age. We determined that the linear rotation velocity of the Galaxy at a solar distance is $V_0=240pm3$~km s$^{-1}$. In this case, the distance from the Sun to the axis of rotation of the Galaxy is found to be $R_0=8.27pm0.10$~kpc. A spectral analysis of radial and residual tangential velocities of Cepheids younger than 120 Myr showed close estimates of the parameters of the spiral density wave obtained from data both at present time and in the past. So, the value of the wavelength $lambda_{R,theta}$ is in the range of [2.4--3.0] kpc, the pitch angle $i_{R,theta}$ is in the range of [$-13^circ$,$-10^circ$] for a four-arm pattern model, the amplitudes of the radial and tangential perturbations are $f_Rsim12$~km s$^{-1}$ and $f_thetasim9$~km s$^{-1}$, respectively. Velocities of Cepheids older than 120 Myr are currently giving a wavelength $lambda_{R,theta}sim5$~kpc. This value differs significantly from one that we obtained from the samples of young Cepheids. An analysis of positions and velocities of old Cepheids, calculated by integrating their orbits backward in time, made it possible to determine significantly more reliable values of the parameters of the spiral density wave: wavelength $lambda_{R,theta}=2.7$~kpc, amplitudes of radial and tangential perturbations are $f_R=7.9$~km s$^{-1}$ and $f_theta=5$~km s$^{-1}$, respectively.
We have studied a sample of more than 25 000 young stars with proper motions and trigonometric parallaxes from the Gaia DR2 catalogue. The relative errors of their parallaxes do not exceed 10%. The selection of stars belonging to active star-forming regions was made by Marton et al. based on data from the Gaia DR2 catalogue by invoking infrared measurements from the WISE and Planck catalogues. Low-mass T Tauri stars constitute the majority of sample stars. The following parameters of the angular velocity of Galactic rotation have been found from them: $Omega_0 =28.40pm0.11$ km s$^{-1}$ kpc$^{-1}$, $Omega^{}_0=-3.933pm0.033$ km s$^{-1}$ kpc$^{-2}$ and $Omega^{}_0=0.804pm0.040$ km s$^{-1}$ kpc$^{-3}$. The Oort constants are $A=15.73pm0.32$ km s$^{-1}$ kpc$^{-1}$ and $B=-12.67pm0.34$ km s$^{-1}$ kpc$^{-1}$, while the circular rotation velocity of the solar neighborhood around the Galactic center is $V_0=227pm4$ km s$^{-1}$ for the adopted Galactocentric distance of the Sun $R_0=8.0pm0.15$ kpc.
Classical Cepheids (CCs) and RR Lyrae stars (RRLs) are important classes of variable stars used as standard candles to estimate galactic and extragalactic distances. Their multiplicity is imperfectly known, particularly for RRLs. Astoundingly, to date only one RRL has convincingly been demonstrated to be a binary, TU UMa, out of tens of thousands of known RRLs. Our aim is to detect the binary and multiple stars present in a sample of Milky Way CCs and RRLs. In the present article, we combine the Hipparcos and Gaia DR2 positions to determine the mean proper motion of the targets, and we search for proper motion anomalies (PMa) caused by close-in orbiting companions. We identify 57 CC binaries from PMa out of 254 tested stars and 75 additional candidates, confirming the high binary fraction of these massive stars. For 28 binary CCs, we determine the companion mass by combining their spectroscopic orbital parameters and astrometric PMa. We detect 13 RRLs showing a significant PMa out of 198 tested stars, and 61 additional candidates. We determine that the binary fraction of CCs is likely above 80%, while that of RRLs is at least 7%. The newly detected systems will be useful to improve our understanding of their evolutionary states. The discovery of a significant number of RRLs in binary systems also resolves the long-standing mystery of their extremely low apparent binary fraction.
153 - G. Monari , B. Famaey , A. Siebert 2019
The second data release of the Gaia mission has revealed, in stellar velocity and action space, multiple ridges, the exact origin of which is still debated. Recently, we demonstrated that a large Galactic bar with pattern speed 39 km/s/kpc does create most of the observed ridges. Among those ridges, the Hercules moving group would then be associated to orbits trapped at the co-rotation resonance of the bar. Here we show that a distinctive prediction of such a model is that the angular momentum of Hercules at the Suns radius must significantly decrease with increasing Galactocentric azimuth, i.e. when getting closer to the major axis of the bar. We show that such a dependence of the angular momentum of trapped orbits on the azimuth would on the other hand not happen close to the outer Lindblad resonance of a faster bar, unless the orbital distribution is still far from phase-mixed, namely for a bar perturbation younger than ~ 2 Gyr. Using Gaia DR2 and Bayesian distances from the StarHorse code, and tracing the average Galactocentric radial velocity as a function of angular momentum and azimuth, we show that the Hercules angular momentum changes significantly with azimuth as expected for the co-rotation resonance of a dynamically old large bar.
Context. The multiplicity of classical Cepheids (CCs) and RR Lyrae stars (RRLs) is still imperfectly known, particularly for RRLs. Aims. In order to complement the close-in short orbital period systems presented in Paper I, our aim is to detect the wide, spatially resolved companions of the targets of our reference samples of Galactic CCs and RRLs. Methods. Angularly resolved common proper motion pairs were detected using a simple progressive selection algorithm to separate the most probable candidate companions from the unrelated field stars. Results. We found 27 resolved, high probability gravitationally bound systems with CCs out of 456 examined stars, and one unbound star embedded in the circumstellar dusty nebula of the long-period Cepheid RS Pup. We found seven spatially resolved, probably bound systems with RRL primaries out of 789 investigated stars, and 22 additional candidate pairs. We report in particular new companions of three bright RRLs: OV And (companion of F4V spectral type), RR Leo (M0V), and SS Oct (K2V). In addition, we discovered resolved companions of 14 stars that were likely misclassified as RRLs. Conclusions. The detection of resolved non-variable companions around CCs and RRLs facilitates the validation of their Gaia DR2 parallaxes. The possibility to conduct a detailed analysis of the resolved coeval companions of CCs and old population RRLs will also be valuable to progress on our understanding of their evolutionary path.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا