Do you want to publish a course? Click here

Quantitative Susceptibility Mapping using Deep Neural Network: QSMnet

86   0   0.0 ( 0 )
 Added by Jongho Lee
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Deep neural networks have demonstrated promising potential for the field of medical image reconstruction. In this work, an MRI reconstruction algorithm, which is referred to as quantitative susceptibility mapping (QSM), has been developed using a deep neural network in order to perform dipole deconvolution, which restores magnetic susceptibility source from an MRI field map. Previous approaches of QSM require multiple orientation data (e.g. Calculation of Susceptibility through Multiple Orientation Sampling or COSMOS) or regularization terms (e.g. Truncated K-space Division or TKD; Morphology Enabled Dipole Inversion or MEDI) to solve the ill-conditioned deconvolution problem. Unfortunately, they either require long multiple orientation scans or suffer from artifacts. To overcome these shortcomings, a deep neural network, QSMnet, is constructed to generate a high quality susceptibility map from single orientation data. The network has a modified U-net structure and is trained using gold-standard COSMOS QSM maps. 25 datasets from 5 subjects (5 orientation each) were applied for patch-wise training after doubling the data using augmentation. Two additional datasets of 5 orientation data were used for validation and test (one dataset each). The QSMnet maps of the test dataset were compared with those from TKD and MEDI for image quality and consistency in multiple head orientations. Quantitative and qualitative image quality comparisons demonstrate that the QSMnet results have superior image quality to those of TKD or MEDI and have comparable image quality to those of COSMOS. Additionally, QSMnet maps reveal substantially better consistency across the multiple orientations than those from TKD or MEDI. As a preliminary application, the network was tested for two patients. The QSMnet maps showed similar lesion contrasts with those from MEDI, demonstrating potential for future applications.



rate research

Read More

An approach to reduce motion artifacts in Quantitative Susceptibility Mapping using deep learning is proposed. We use an affine motion model with randomly created motion profiles to simulate motion-corrupted QSM images. The simulated QSM image is paired with its motion-free reference to train a neural network using supervised learning. The trained network is tested on unseen simulated motion-corrupted QSM images, in healthy volunteers and in Parkinsons disease patients. The results show that motion artifacts, such as ringing and ghosting, were successfully suppressed.
Recently, deep neural network-powered quantitative susceptibility mapping (QSM), QSMnet, successfully performed ill conditioned dipole inversion in QSM and generated high-quality susceptibility maps. In this paper, the network, which was trained by healthy volunteer data, is evaluated for hemorrhagic lesions that have substantially higher susceptibility than healthy tissues in order to test linearity of QSMnet for susceptibility. The results show that QSMnet underestimates susceptibility in hemorrhagic lesions, revealing degraded linearity of the network for the untrained susceptibility range. To overcome this limitation, a data augmentation method is proposed to generalize the network for a wider range of susceptibility. The newly trained network, which is referred to as QSMnet+, is assessed in computer-simulated lesions with an extended susceptibility range (-1.4 ppm to +1.4 ppm) and also in twelve hemorrhagic patients. The simulation results demonstrate improved linearity of QSMnet+ over QSMnet (root mean square error of QSMnet+: 0.04 ppm vs. QSMnet: 0.36 ppm). When applied to patient data, QSMnet+ maps show less noticeable artifacts to those of conventional QSM maps. Moreover, the susceptibility values of QSMnet+ in hemorrhagic lesions are better matched to those of the conventional QSM method than those of QSMnet when analyzed using linear regression (QSMnet+: slope = 1.05, intercept = -0.03, R2 = 0.93; QSMnet: slope = 0.68, intercept = 0.06, R2 = 0.86), consolidating improved linearity in QSMnet+. This study demonstrates the importance of the trained data range in deep neural network-powered parametric mapping and suggests the data augmentation approach for generalization of network. The new network can be applicable for a wide range of susceptibility quantification.
Quantitative susceptibility mapping (QSM) has gained broad interests in the field by extracting biological tissue properties, predominantly myelin, iron and calcium from magnetic resonance imaging (MRI) phase measurements in vivo. Thereby, QSM can reveal pathological changes of these key components in a variety of diseases. QSM requires multiple processing steps such as phase unwrapping, background field removal and field-to-source-inversion. Current state of the art techniques utilize iterative optimization procedures to solve the inversion and background field correction, which are computationally expensive and require a careful choice of regularization parameters. With the recent success of deep learning using convolutional neural networks for solving ill-posed reconstruction problems, the QSM community also adapted these techniques and demonstrated that the QSM processing steps can be solved by efficient feed forward multiplications not requiring iterative optimization nor the choice of regularization parameters. Here, we review the current status of deep learning based approaches for processing QSM, highlighting limitations and potential pitfalls, and discuss the future directions the field may take to exploit the latest advances in deep learning for QSM.
Magnetic resonance $T_2^*$ mapping and quantitative susceptibility mapping (QSM) provide direct and precise mappings of tissue contrasts. They are widely used to study iron deposition, hemorrhage and calcification in various clinical applications. In practice, the measurements can be undersampled in the $k$-space to reduce the scan time needed for high-resolution 3D maps, and sparse prior on the wavelet coefficients of images can be used to fill in the missing information via compressive sensing. To avoid the extensive parameter tuning process of conventional regularization methods, we adopt a Bayesian approach to perform $T_2^*$ mapping and QSM using approximate message passing (AMP): the sparse prior is enforced through probability distributions, and the distribution parameters can be automatically and adaptively estimated. In this paper we propose a new nonlinear AMP framework that incorporates the mono-exponential decay model, and use it to recover the proton density, the $T_2^*$ map and complex multi-echo images. The QSM can be computed from the multi-echo images subsequently. Experimental results show that the proposed approach successfully recovers $T_2^*$ map and QSM across various sampling rates, and performs much better than the state-of-the-art $l_1$-norm regularization approach.
A learning-based posterior distribution estimation method, Probabilistic Dipole Inversion (PDI), is proposed to solve the quantitative susceptibility mapping (QSM) inverse problem in MRI with uncertainty estimation. In PDI, a deep convolutional neural network (CNN) is used to represent the multivariate Gaussian distribution as the approximate posterior distribution of susceptibility given the input measured field. Such CNN is first trained on healthy subjects via posterior density estimation, where the training dataset contains samples from the true posterior distribution. Domain adaptations are then deployed on patient datasets with new pathologies not included in pre-training, where PDI updates the pre-trained CNNs weights in an unsupervised fashion by minimizing the Kullback-Leibler divergence between the approximate posterior distribution represented by CNN and the true posterior distribution from the likelihood distribution of a known physical model and pre-defined prior distribution. Based on our experiments, PDI provides additional uncertainty estimation compared to the conventional MAP approach, while addressing the potential issue of the pre-trained CNN when test data deviates from training.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا