Do you want to publish a course? Click here

Schur complement solver for Quantum Monte-Carlo simulations of strongly interacting fermions

65   0   0.0 ( 0 )
 Added by Maxim Ulybyshev
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a non-iterative solver based on the Schur complement method for sparse linear systems of special form which appear in Quantum Monte-Carlo (QMC) simulations of strongly interacting fermions on the lattice. While the number of floating-point operations for this solver scales as the cube of the number of lattice sites, for practically relevant lattice sizes it is still significantly faster than iterative solvers such as the Conjugate Gradient method in the regime of strong inter-fermion interactions, for example, in the vicinity of quantum phase transitions. The speed-up is even more dramatic for the solution of multiple linear systems with different right-hand sides. We present benchmark results for QMC simulations of the tight-binding models on the hexagonal graphene lattice with on-site (Hubbard) and non-local (Coulomb) interactions, and demonstrate the potential for further speed-up using GPU.



rate research

Read More

212 - Fakher F. Assaad 2015
We show that the two recently proposed methods to compute Renyi entanglement entropies in the realm of determinant quantum Monte Carlo methods for fermions are in principle equivalent, but differ in sampling strategies. The analogy allows to formulate a numerically stable calculation of the entanglement spectrum at strong coupling. We demonstrate the approach by studying static and dynamical properties of the entanglement hamiltonian across the interaction driven quantum phase transition between a topological insulator and quantum antiferromagnet in the Kane-Mele Hubbard model. The formulation is not limited to fermion systems and can readily be adapted to world-line based simulations of bosonic systems.
147 - Edwin W. Huang , Yao Wang 2021
Cluster Perturbation Theory (CPT) is a technique for computing the spectral function of fermionic models with local interactions. By combining the solution of the model on a finite cluster with perturbation theory on intra-cluster hoppings, CPT provides access to single-particle properties with arbitrary momentum resolution while incurring low computational cost. Here, we introduce Determinantal Quantum Monte Carlo (DQMC) as a solver for CPT. Compared to the standard solver, exact diagonalization (ED), the DQMC solver reduces finite size effects through utilizing larger clusters, allows study of temperature dependence, and enables large-scale simulations of a greater set of models. We discuss the implementation of the DQMC solver for CPT and benchmark the CPT+DQMC method for the attractive and repulsive Hubbard models, showcasing its advantages over standard DQMC and CPT+ED simulations.
The Algorithms for Lattice Fermions package provides a general code for the finite-temperature and projective auxiliary-field quantum Monte Carlo algorithm. The code is engineered to be able to simulate any model that can be written in terms of sums of single-body operators, of squares of single-body operators and single-body operators coupled to a bosonic field with given dynamics. The package includes five pre-defined model classes: SU(N) Kondo, SU(N) Hubbard, SU(N) t-V and SU(N) models with long range Coulomb repulsion on honeycomb, square and N-leg lattices, as well as $Z_2$ unconstrained lattice gauge theories coupled to fermionic and $Z_2$ matter. An implementation of the stochastic Maximum Entropy method is also provided. One can download the code from our Git instance at https://git.physik.uni-wuerzburg.de/ALF/ALF/-/tree/ALF-2.0 and sign in to file issues.
We present different methods to increase the performance of Hybrid Monte Carlo simulations of the Hubbard model in two-dimensions. Our simulations concentrate on a hexagonal lattice, though can be easily generalized to other lattices. It is found that best results can be achieved using a flexible GMRES solver for matrix
97 - Shi Jin , Xiantao Li 2020
Random batch algorithms are constructed for quantum Monte Carlo simulations. The main objective is to alleviate the computational cost associated with the calculations of two-body interactions, including the pairwise interactions in the potential energy, and the two-body terms in the Jastrow factor. In the framework of variational Monte Carlo methods, the random batch algorithm is constructed based on the over-damped Langevin dynamics, so that updating the position of each particle in an $N$-particle system only requires $mathcal{O}(1)$ operations, thus for each time step the computational cost for $N$ particles is reduced from $mathcal{O}(N^2)$ to $mathcal{O}(N)$. For diffusion Monte Carlo methods, the random batch algorithm uses an energy decomposition to avoid the computation of the total energy in the branching step. The effectiveness of the random batch method is demonstrated using a system of liquid ${}^4$He atoms interacting with a graphite surface.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا