Quantum systems are prone to decoherence due to both intrinsic interactions as well as random fluctuations from the environment. Using the Pechukas-Yukawa formalism, we investigate the influence of noise on the dynamics of an adiabatically evolving Hamiltonian which can describe a quantum computer. Under this description, the level dynamics of a parametrically perturbed quantum Hamiltonian are mapped to the dynamics of 1D classical gas. We show that our framework coincides with the results of the classical Landau-Zener transitions upon linearisation. Furthermore, we determine the effects of external noise on the level dynamics and its impact on Landau-Zener transitions.