No Arabic abstract
We present the results of a search for rapidly evolving transients in the Dark Energy Survey Supernova Programme. These events are characterized by fast light curve evolution (rise to peak in $lesssim 10$ d and exponential decline in $lesssim30$ d after peak). We discovered 72 events, including 37 transients with a spectroscopic redshift from host galaxy spectral features. The 37 events increase the total number of rapid optical transients by more than factor of two. They are found at a wide range of redshifts ($0.05<z<1.56$) and peak brightnesses ($-15.75>M_mathrm{g}>-22.25$). The multiband photometry is well fit by a blackbody up to few weeks after peak. The events appear to be hot ($Tapprox10000-30000$ K) and large ($Rapprox 10^{14}-2cdot10^{15}$ cm) at peak, and generally expand and cool in time, though some events show evidence for a receding photosphere with roughly constant temperature. Spectra taken around peak are dominated by a blue featureless continuum consistent with hot, optically thick ejecta. We compare our events with a previously suggested physical scenario involving shock breakout in an optically thick wind surrounding a core-collapse supernova (CCSNe), we conclude that current models for such a scenario might need an additional power source to describe the exponential decline. We find these transients tend to favor star-forming host galaxies, which could be consistent with a core-collapse origin. However, more detailed modeling of the light curves is necessary to determine their physical origin.
Rapidly evolving transients (RETs), also termed fast blue optical transients (FBOTs), are a distinct class of astrophysical event. They are characterised by lightcurves that decline much faster than common classes supernovae (SNe), span vast ranges in peak luminosity and can be seen to redshifts greater than 1. Their evolution on fast timescales has hindered high quality follow-up observations, and thus their origin and explosion/emission mechanism remains unexplained. In this paper we define the largest sample of RETs to date, comprising 106 objects from the Dark Energy Survey, and perform the most comprehensive analysis of RET host galaxies. Using deep-stacked photometry and emission-lines from OzDES spectroscopy, we derive stellar masses and star-formation rates (SFRs) for 49 host galaxies, and metallicities for 37. We find that RETs explode exclusively in star-forming galaxies and are thus likely associated with massive stars. Comparing RET hosts to samples of host galaxies of other explosive transients as well as field galaxies, we find that RETs prefer galaxies with high specific SFRs, indicating a link to young stellar populations, similar to stripped-envelope SNe. RET hosts appear to show a lack of chemical enrichment, their metallicities akin to long duration gamma-ray bursts and superluminous SN host galaxies. There are no clear relationships between properties of the host galaxies and the peak magnitudes or decline rates of the transients themselves.
Rapidly evolving transients form a new class of transients which show shorter timescales of the light curves than those of typical core-collapse and thermonuclear supernovae. We performed a systematic search for rapidly evolving transients using the deep data taken with the Hyper Suprime-Cam Subaru Strategic Program Transient Survey. By measuring the timescales of the light curves of 1824 transients, we identified 5 rapidly evolving transients. Our samples are found in a wide range of redshifts (0.3 $le$ z $le$ 1.5) and peak absolute magnitudes ($-$17 $ge$ $M_i$ $ge$ $-$20). The properties of the light curves are similar to those of the previously discovered rapidly evolving transients. They show a relatively blue spectral energy distribution, with the best-fit blackbody of 8,000 - 18,000 K. We show that some of the transients require power sources other than the radioactive decays of $^{56}$Ni because of their high peak luminosities and short timescales. The host galaxies of all the samples are star-forming galaxies, suggesting a massive star origin for the rapidly evolving transients. The event rate is roughly estimated to be $sim$4,000 events yr$^{-1}$ Gpc$^{-3}$, which is about 1 $%$ of core-collapse supernovae.
We present 42 rapidly evolving (time spent above half-maximum brightness $t_{1/2}<12$d) extragalactic transients from Phase I of the Zwicky Transient Facility (ZTF), of which 22 have spectroscopic classifications. This is one of the largest systematically selected samples of day-timescale transients, and the first with spectroscopic classifications. Most can be classified as core-collapse supernovae (SNe), and we identify several predominant subtypes: (1) subluminous Type IIb or Type Ib SNe; (2) luminous Type Ibn or hybrid IIn/Ibn SNe; and (3) radio-loud, short-duration luminous events similar to AT2018cow. We conclude that rates quoted in the literature for rapidly evolving extragalactic transients are dominated by the subluminous events (mostly Type IIb SNe). From our spectroscopic classifications and radio, X-ray, and millimeter-band upper limits, we are motivated to consider the AT2018cow-like objects a distinct class, and use ZTFs systematic classification experiments to calculate that their rate does not exceed 0.1% of the local core-collapse SN rate, in agreement with previous work. By contrast, most other events are simply the extreme of a continuum of established SN types extending to ordinary timescales. The light curves of our objects are very similar to those of unclassified events in the literature, illustrating how spectroscopically classified samples of low-redshift objects in shallow surveys like ZTF can be used to photometrically classify larger numbers of events at higher redshift.
We present rapidly rising transients discovered by a high-cadence transient survey with Subaru telescope and Hyper Suprime-Cam. We discovered five transients at z=0.384-0.821 showing the rising rate faster than 1 mag per 1 day in the restframe near-ultraviolet wavelengths. The fast rising rate and brightness are the most similar to SN 2010aq and PS1-13arp, for which the ultraviolet emission within a few days after the shock breakout was detected. The lower limit of the event rate of rapidly rising transients is ~9 % of core-collapse supernova rates, assuming a duration of rapid rise to be 1 day. We show that the light curves of the three faint objects agree with the cooling envelope emission from the explosion of red supergiants. The other two luminous objects are, however, brighter and faster than the cooling envelope emission. We interpret these two objects to be the shock breakout from dense wind with the mass loss rate of ~10^{-3} Msun yr^{-1}, as also proposed for PS1-13arp. This mass loss rate is higher than that typically observed for red supergiants. The event rate of these luminous objects is >~1 % of core-collapse supernova rate, and thus, our study implies that more than ~1 % of massive stars can experience an intensive mass loss at a few years before the explosion.
Wide-field surveys are discovering a growing number of rare transients whose physical origin is not yet well understood. Here, we present optical and UV data and analysis of iPTF16asu, a luminous, rapidly-evolving, high velocity, stripped-envelope supernova. With a rest-frame rise-time of just 4 days and a peak absolute magnitude of $M_{rm g}=-20.4$ mag, the light curve of iPTF16asu is faster and more luminous than previous rapid transients. The spectra of iPTF16asu show a featureless, blue continuum near peak that develops into a Type Ic-BL spectrum on the decline. We show that while the late-time light curve could plausibly be powered by $^{56}$Ni decay, the early emission requires a different energy source. Non-detections in the X-ray and radio strongly constrain any associated gamma-ray burst to be low-luminosity. We suggest that the early emission may have been powered by either a rapidly spinning-down magnetar, or by shock breakout in an extended envelope of a very energetic explosion. In either scenario a central engine is required, making iPTF16asu an intriguing transition object between superluminous supernovae, Type Ic-BL supernovae, and low-energy gamma-ray bursts.