Do you want to publish a course? Click here

Cosmic clocks: A Tight Radius - Velocity Relationship for HI-Selected Galaxies

143   0   0.0 ( 0 )
 Added by Gerhardt Meurer
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

HI-Selected galaxies obey a linear relationship between their maximum detected radius Rmax and rotational velocity. This result covers measurements in the optical, ultraviolet, and HI emission in galaxies spanning a factor of 30 in size and velocity, from small dwarf irregulars to the largest spirals. Hence, galaxies behave as clocks, rotating once a Gyr at the very outskirts of their discs. Observations of a large optically-selected sample are consistent, implying this relationship is generic to disc galaxies in the low redshift Universe. A linear RV relationship is expected from simple models of galaxy formation and evolution. The total mass within Rmax has collapsed by a factor of 37 compared to the present mean density of the Universe. Adopting standard assumptions we find a mean halo spin parameter lambda in the range 0.020 to 0.035. The dispersion in lambda, 0.16 dex, is smaller than expected from simulations. This may be due to the biases in our selection of disc galaxies rather than all halos. The estimated mass densities of stars and atomic gas at Rmax are similar (~0.5 Msun/pc^2) indicating outer discs are highly evolved. The gas consumption and stellar population build time-scales are hundreds of Gyr, hence star formation is not driving the current evolution of outer discs. The estimated ratio between Rmax and disc scale length is consistent with long-standing predictions from monolithic collapse models. Hence, it remains unclear whether disc extent results from continual accretion, a rapid initial collapse, secular evolution or a combination thereof.



rate research

Read More

The relations between the specific angular momenta ($j$) and masses ($M$) of galaxies are often used as a benchmark in analytic models and hydrodynamical simulations as they are considered to be amongst the most fundamental scaling relations. Using accurate measurements of the stellar ($j_ast$), gas ($j_{rm gas}$), and baryonic ($j_{rm bar}$) specific angular momenta for a large sample of disc galaxies, we report the discovery of tight correlations between $j$, $M$, and the cold gas fraction of the interstellar medium ($f_{rm gas}$). At fixed $f_{rm gas}$, galaxies follow parallel power laws in 2D $(j,M)$ spaces, with gas-rich galaxies having a larger $j_ast$ and $j_{rm bar}$ (but a lower $j_{rm gas}$) than gas-poor ones. The slopes of the relations have a value around 0.7. These new relations are amongst the tightest known scaling laws for galaxies. In particular, the baryonic relation ($j_{rm bar}-M_{rm bar}-f_{rm gas}$), arguably the most fundamental of the three, is followed not only by typical discs but also by galaxies with extreme properties, such as size and gas content, and by galaxies previously claimed to be outliers of the standard 2D $j-M$ relations. The stellar relation ($j_{ast}-M_{ast}-f_{rm gas}$) may be connected to the known $j_ast-M_ast-$bulge fraction relation; however, we argue that the $j_{rm bar}-M_{rm bar}-f_{rm gas}$ relation can originate from the radial variation in the star formation efficiency in galaxies, although it is not explained by current disc instability models.
We investigate the properties of HI-rich galaxies detected in blind radio surveys within the hierarchical structure formation scenario using a semi-analytic model of galaxy formation. By drawing a detailed comparison between the properties of HI-selected galaxies and HI absorption systems, we argue a link between the local galaxy population and quasar absorption systems, particularly for Damped Ly-alpha absorption (DLA) systems and sub-DLA systems. First, we evaluate how many HI-selected galaxies exhibit HI column densities as high as those of DLA systems. We find that HI-selected galaxies with HI masses M(HI) > 10^8 solar masses have gaseous disks that produce HI column densities comparable to those of DLA systems. We conclude that DLA galaxies where the HI column densities are as high as those of DLA systems, contribute significantly to the population of HI-selected galaxies at M(HI) > 10^8 solar masses. Second, we find that star formation rates (SFRs) correlate tightly with HI masses rather than B- (and J-) band luminosities. In the low-mass range M(HI) < 10^8 solar masses, sub-DLA galaxies replace DLA galaxies as the dominant population. The number fraction of sub-DLA galaxies relative to galaxies reaches 40%-60% at HI masses 10^8 solar masses and 30%-80% at 10^7 solar masses. The HI-selected galaxies at 10^7 solar masses are a strong probe of sub-DLA systems that place stringent constraints on galaxy formation and evolution.
181 - Aseem Paranjape 2021
We model the distribution of the observed profiles of 21 cm line emission from neutral hydrogen (HI) in central galaxies selected from a statistically representative mock catalog of the local Universe in the Lambda-cold dark matter framework. The distribution of these HI velocity profiles (specifically, their widths $W_{50}$) has been observationally constrained, but has not been systematically studied theoretically. Our model profiles derive from rotation curves of realistically baryonified haloes in an N-body simulation, including the quasi-adiabatic relaxation of the dark matter profile of each halo in response to its baryons. We study the predicted $W_{50}$ distribution using a realistic pipeline applied to noisy profiles extracted from our luminosity-complete mock catalog with an ALFALFA-like survey geometry and redshift selection. Our default mock is in good agreement with observed ALFALFA results for $W_{50}gtrsim700$ km/s, being incomplete at lower widths due to the intrinsic threshold of $M_rleq-19$. Variations around the default model show that the velocity width function at $W_{50}gtrsim300$ km/s is most sensitive to a possible correlation between galaxy inclination and host concentration, followed by the physics of quasi-adiabatic relaxation. We also study the excess kurtosis of noiseless velocity profiles, obtaining a distribution which tightly correlates with $W_{50}$, with a shape and scatter that depend on the properties of the turbulent HI disk. Our results open the door towards using the shapes of HI velocity profiles as a novel statistical probe of the baryon-dark matter connection.
145 - Gerhardt Meurer 2016
The HI in galaxies often extends past their conventionally defined optical extent. I report results from our team which has been probing low intensity star formation in outer disks using imaging in H-alpha and ultraviolet. Using a sample of hundreds of HI selected galaxies, we confirm that outer disk HII regions and extended UV disks are common. Hence outer disks are not dormant but are dimly forming stars. Although the ultraviolet light in galaxies is more centrally concentrated than the HI, the UV/HI ratio (the Star Formation Efficiency) is nearly constant, with a slight dependency on surface brightness. This result is well accounted for in a model where disks maintain a constant stability parameter Q. This model also accounts for how the ISM and star formation are distributed in the bright parts of galaxies, and how HI appears to trace the distribution of dark matter in galaxy outskirts.
Using archival data from the HI Parkes All Sky Survey (HIPASS) we have searched for 21 cm line absorption in 204 nearby radio and star-forming galaxies with continuum flux densities greater than $S_{1.4} approx 250$ mJy within the redshift range $0 < cz < 12000$ km s$^{-1}$. By applying a detection method based on Bayesian model comparison, we successfully detect and model absorption against the radio-loud nuclei of four galaxies, of which the Seyfert 2 galaxy 2MASX J130804201-2422581 was previously unknown. All four detections were achieved against compact radio sources, which include three active galactic nuclei (AGNs) and a nuclear starburst, exhibiting high dust and molecular gas content. Our results are consistent with the detection rate achieved by the recent ALFALFA (Arecibo Legacy Fast Arecibo L-band Feed Array) HI absorption pilot survey by Darling et al. and we predict that the full ALFALFA survey should yield more than three to four times as many detections as we have achieved here. Furthermore, we predict that future all-sky surveys on the Square Kilometre Array precursor telescopes will be able to detect such strong absorption systems associated with type 2 AGNs at much higher redshifts, providing potential targets for detection of H$_{2}$O megamaser emission at cosmological redshifts.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا