Classical from Quantum


Abstract in English

We consider the quantum-to-classical transition for macroscopic systems coupled to their environments. By applying Borns Rule, we are led to a particular set of quantum trajectories, or an unravelling, that describes the state of the system from the frame of reference of the subsystem. The unravelling involves a branch dependent Schmidt decomposition of the total state vector. The state in the subsystem frame, the conditioned state, is described by a Poisson process that involves a non-linear deterministic effective Schrodinger equation interspersed with quantum jumps into orthogonal states. We then consider a system whose classical analogue is a generic chaotic system. Although the state spreads out exponentially over phase space, the state in the frame of the subsystem localizes onto a narrow wave packet that follows the classical trajectory due to Ehrenfests Theorem. Quantum jumps occur with a rate that is the order of the effective Lyapunov exponent of the classical chaotic system and imply that the wave packet undergoes random kicks described by the classical Langevin equation of Brownian motion. The implication of the analysis is that this theory can explain in detail how classical mechanics arises from quantum mechanics by using only unitary evolution and Borns Rule applied to a subsystem.

Download