Reconstruction Algorithm Design for Mitigating the Orientation Dependent Conspicuity of Fiber-Like signals in Digital Breast Tomosynthesis


Abstract in English

There are a number of clinically relevant tasks in digital breast tomosynthesis (DBT) involving the detection and visual assessment of fiber-like structures such as Coopers ligaments, blood vessels, and spiculated lesions. Such structures can exhibit orientation dependent variations in conspicuity. This study demonstrates the presence of in-plane orientation-dependent signal conspicuity for fiber-like signals in DBT and shows how reconstruction algorithm design can mitigate this phenomenon. We uncover a tradeoff between minimizing orientation-dependence and preserving depth resolution that is dictated by the regularization strength employed in reconstruction.

Download