No Arabic abstract
Symmetry broken states arise naturally in oscillatory networks. In this Letter, we investigate chaotic attractors in an ensemble of four mean-coupled Stuart-Landau oscillators with two oscillators being synchronized. We report that these states with partially broken symmetry, so-called chimera states, have different set-wise symmetries in the incoherent oscillators, and in particular some are and some are not invariant under a permutation symmetry on average. This allows for a classification of different chimera states in small networks. We conclude our report with a discussion of related states in spatially extended systems, which seem to inherit the symmetry properties of their counterparts in small networks.
We present a universal characterization scheme for chimera states applicable to both numerical and experimental data sets. The scheme is based on two correlation measures that enable a meaningful definition of chimera states as well as their classification into three categories: stationary, turbulent and breathing. In addition, these categories can be further subdivided according to the time-stationarity of these two measures. We demonstrate that this approach both is consistent with previously recognized chimera states and enables us to classify states as chimeras which have not been categorized as such before. Furthermore, the scheme allows for a qualitative and quantitative comparison of experimental chimeras with chimeras obtained through numerical simulations.
We study the dynamics of coupled systems, ranging from maps supporting chaotic attractors to nonlinear differential equations yielding limit cycles, under different coupling classes, connectivity ranges and initial states. Our focus is the robustness of chimera states in the presence of a few time-varying random links, and we demonstrate that chimera states are often destroyed, yielding either spatiotemporal fixed points or spatiotemporal chaos, in the presence of even a single dynamically changing random connection. We also study the global impact of random links by exploring the Basin Stability of the chimera state, and we find that the basin size of the chimera state rapidly falls to zero under increasing fraction of random links. This indicates the extreme fragility of chimera patterns under minimal spatial randomness in many systems, significantly impacting the potential observability of chimera states in naturally occurring scenarios.
Oscillatory systems with long-range or global coupling offer promising insight into the interplay between high-dimensional (or microscopic) chaotic motion and collective interaction patterns. Within this paper, we use Lyapunov analysis to investigate whether chimera states in globally coupled Stuart-Landau (SL) oscillators exhibit collective degrees of freedom. We compare two types of chimera states, which emerge in SL ensembles with linear and nonlinear global coupling, respectively, the latter introducing a constraint that conserves the oscillation of the mean. Lyapunov spectra reveal that for both chimera states the Lyapunov exponents split into different groups with different convergence properties in the limit of large system size. Furthermore, in both cases the Lyapunov dimension is found to scale extensively and the localization properties of covariant Lypunov vectors manifest the presence of collective Lyapunov modes. Here, however, we find qualitative differences between the two types of chimera states: Whereas the ones in the system under nonlinear global coupling exhibit only slow collective modes corresponding to Lyapunov exponents equal or close to zero, those which experience the linear mean-field coupling exhibit also faster collective modes associated with Lyapunov exponents with large positive or negative values.
We consider networks formed from two populations of identical oscillators, with uniform strength all-to-all coupling within populations, and also between populations, with a different strength. Such systems are known to support chimera states in which oscillators within one population are perfectly synchronised while in the other the oscillators are incoherent, and have a different mean frequency from those in the synchronous population. Assuming that the oscillators in the incoherent population always lie on a closed smooth curve $mathcal{C}$, we derive and analyse the dynamics of the shape of $mathcal{C}$ and the probability density on $mathcal{C}$, for four different types of oscillators. We put some previously derived results on a rigorous footing, and analyse two new systems.
The chimera state with co-existing coherent-incoherent dynamics has recently attracted a lot of attention due to its wide applicability. We investigate non-locally coupled identical chaotic maps with delayed interactions in the multiplex network framework and find that an interplay of delay and multiplexing brings about an enhanced or suppressed appearance of chimera state depending on the distribution as well as the parity of delay values in the layers. Additionally, we report a layer chimera state with an existence of one layer displaying coherent and another layer demonstrating incoherent dynamical evolution. The rich variety of dynamical behavior demonstrated here can be used to gain further insight into the real-world networks which inherently possess such multi-layer architecture with delayed interactions.