Do you want to publish a course? Click here

Accuracy-Reliability Cost Function for Empirical Variance Estimation

142   0   0.0 ( 0 )
 Added by Enrico Camporeale
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In this paper we focus on the problem of assigning uncertainties to single-point predictions. We introduce a cost function that encodes the trade-off between accuracy and reliability in probabilistic forecast. We derive analytic formula for the case of forecasts of continuous scalar variables expressed in terms of Gaussian distributions. The Accuracy-Reliability cost function can be used to empirically estimate the variance in heteroskedastic regression problems (input dependent noise), by solving a two-objective optimization problem. The simple philosophy behind this strategy is that predictions based on the estimated variances should be both accurate and reliable (i.e. statistical consistent with observations). We show several examples with synthetic data, where the underlying hidden noise function can be accurately recovered, both in one and multi-dimensional problems. The practical implementation of the method has been done using a Neural Network and, in the one-dimensional case, with a simple polynomial fit.



rate research

Read More

This paper develops a general framework for analyzing asymptotics of $V$-statistics. Previous literature on limiting distribution mainly focuses on the cases when $n to infty$ with fixed kernel size $k$. Under some regularity conditions, we demonstrate asymptotic normality when $k$ grows with $n$ by utilizing existing results for $U$-statistics. The key in our approach lies in a mathematical reduction to $U$-statistics by designing an equivalent kernel for $V$-statistics. We also provide a unified treatment on variance estimation for both $U$- and $V$-statistics by observing connections to existing methods and proposing an empirically more accurate estimator. Ensemble methods such as random forests, where multiple base learners are trained and aggregated for prediction purposes, serve as a running example throughout the paper because they are a natural and flexible application of $V$-statistics.
There are many models, often called unnormalized models, whose normalizing constants are not calculated in closed form. Maximum likelihood estimation is not directly applicable to unnormalized models. Score matching, contrastive divergence method, pseudo-likelihood, Monte Carlo maximum likelihood, and noise contrastive estimation (NCE) are popular methods for estimating parameters of such models. In this paper, we focus on NCE. The estimator derived from NCE is consistent and asymptotically normal because it is an M-estimator. NCE characteristically uses an auxiliary distribution to calculate the normalizing constant in the same spirit of the importance sampling. In addition, there are several candidates as objective functions of NCE. We focus on how to reduce asymptotic variance. First, we propose a method for reducing asymptotic variance by estimating the parameters of the auxiliary distribution. Then, we determine the form of the objective functions, where the asymptotic variance takes the smallest values in the original estimator class and the proposed estimator classes. We further analyze the robustness of the estimator.
We present a novel approach to Bayesian inference and general Bayesian computation that is defined through a sequential decision loop. Our method defines a recursive partitioning of the sample space. It neither relies on gradients nor requires any problem-specific tuning, and is asymptotically exact for any density function with a bounded domain. The output is an approximation to the whole density function including the normalisation constant, via partitions organised in efficient data structures. Such approximations may be used for evidence estimation or fast posterior sampling, but also as building blocks to treat a larger class of estimation problems. The algorithm shows competitive performance to recent state-of-the-art methods on synthetic and real-world problems including parameter inference for gravitational-wave physics.
We revisit empirical Bayes in the absence of a tractable likelihood function, as is typical in scientific domains relying on computer simulations. We investigate how the empirical Bayesian can make use of neural density estimators first to use all noise-corrupted observations to estimate a prior or source distribution over uncorrupted samples, and then to perform single-observation posterior inference using the fitted source distribution. We propose an approach based on the direct maximization of the log-marginal likelihood of the observations, examining both biased and de-biased estimators, and comparing to variational approaches. We find that, up to symmetries, a neural empirical Bayes approach recovers ground truth source distributions. With the learned source distribution in hand, we show the applicability to likelihood-free inference and examine the quality of the resulting posterior estimates. Finally, we demonstrate the applicability of Neural Empirical Bayes on an inverse problem from collider physics.
In this paper, we propose a unified view of gradient-based algorithms for stochastic convex composite optimization by extending the concept of estimate sequence introduced by Nesterov. This point of view covers the stochastic gradient descent method, variants of the approaches SAGA, SVRG, and has several advantages: (i) we provide a generic proof of convergence for the aforementioned methods; (ii) we show that this SVRG variant is adaptive to strong convexity; (iii) we naturally obtain new algorithms with the same guarantees; (iv) we derive generic strategies to make these algorithms robust to stochastic noise, which is useful when data is corrupted by small random perturbations. Finally, we show that this viewpoint is useful to obtain new accelerated algorithms in the sense of Nesterov.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا