Do you want to publish a course? Click here

Superstrings on AdS3 at k=1

253   0   0.0 ( 0 )
 Added by Massimo Porrati
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We study superstring theory in three dimensional Anti-de Sitter spacetime with NS-NS flux, focusing on the case where the radius of curvature is equal to the string length. This corresponds to the critical level k=1 in the Wess-Zumino-Witten description. Previously, it was argued that a transition takes place at this special radius, from a phase dominated by black holes at larger radius to one dominated by long strings at smaller radius. We argue that the infinite tower of modes that become massless at k=1 is a signal of this transition. We propose a simple two-dimensional conformal field theory as the holographic dual to superstring theory at k=1. As evidence for our conjecture, we demonstrate that at large N our putative dual exactly reproduces the full spectrum of the long strings of the weakly coupled string theory, including states unprotected by supersymmetry.



rate research

Read More

We study the formation of three-string junctions between (p,q)-cosmic superstrings, and collisions between such strings and show that kinematic constraints analogous to those found previously for collisions of Nambu-Goto strings apply here too, with suitable modifications to take account of the additional requirements of flux conservation. We examine in detail several examples involving collisions between strings with low values of p and q, and also examine the rates of growth or shrinkage of strings at a junction. Finally, we briefly discuss the formation of junctions for strings in a warped space, specifically with a Klebanov-Strassler throat, and show that similar constraints still apply with changes to the parameters taking account of the warping and the background flux.
We consider subregion complexity within the AdS3/CFT2 correspondence. We rewrite the volume proposal, according to which the complexity of a reduced density matrix is given by the spacetime volume contained inside the associated Ryu-Takayanagi (RT) surface, in terms of an integral over the curvature. Using the Gauss-Bonnet theorem we evaluate this quantity for general entangling regions and temperature. In particular, we find that the discontinuity that occurs under a change in the RT surface is given by a fixed topological contribution, independent of the temperature or details of the entangling region. We offer a definition and interpretation of subregion complexity in the context of tensor networks, and show numerically that it reproduces the qualitative features of the holographic computation in the case of a random tensor network using its relation to the Ising model. Finally, we give a prescription for computing subregion complexity directly in CFT using the kinematic space formalism, and use it to reproduce some of our explicit gravity results obtained at zero temperature. We thus obtain a concrete matching of results for subregion complexity between the gravity and tensor network approaches, as well as a CFT prescription.
In this note we discuss a possible holographic dual of the two dimensional conformal field theory associated with the world-sheet of a macroscopic superstring in a compactification on four-torus. We assume the near horizon geometry of the black string has symmetries of $AdS_3times S^3times T^4$ and construct a sigma model in the bulk. Analyzing the symmetries of the bulk theory and comparing them with those of the CFT in a special light-cone gauge we find agreement between global symmetries. Due to non-standard gauge realization it is not clear how affine symmetries can be realized.
Perturbations of a class of semiclassical spiky strings in three dimensional Anti-de Sitter (AdS) spacetime, are investigated using the well-known Jacobi equations for small, normal deformations of an embedded timelike surface. We show that the equation for the perturbation scalar which governs the behaviour of such small deformations, is a special case of the well-known Darboux-Treibich-Verdier (DTV) equation. The eigenvalues and eigensolutions of the DTV equation for our case are obtained by solving certain continued fractions numerically. These solutions are thereafter utilised to further demonstrate that there do exist finite perturbations of the AdS spiky strings. Our results therefore establish that the spiky string configurations in AdS3 are indeed stable against small fluctuations. Comments on future possibilities of work are included in conclusion.
Four-dimensional (4D) flat Minkowski space admits a foliation by hyperbolic slices. Euclidean AdS3 slices fill the past and future lightcones of the origin, while dS3 slices fill the region outside the lightcone. The resulting link between 4D asymptotically flat quantum gravity and AdS3/CFT2 is explored in this paper. The 4D superrotations in the extended BMS4 group are found to act as the familiar conformal transformations on the 3D hyperbolic slices, mapping each slice to itself. The associated 4D superrotation charge is constructed in the covariant phase space formalism. The soft part gives the 2D stress tensor, which acts on the celestial sphere at the boundary of the hyperbolic slices, and is shown to be an uplift to 4D of the familiar 3D holographic AdS3 stress tensor. Finally, we find that 4D quantum gravity contains an unexpected second, conformally soft, dimension (2, 0) mode that is symplectically paired with the celestial stress tensor.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا