Do you want to publish a course? Click here

Schrodinger equations with singular potentials: linear and nonlinear boundary value problems

73   0   0.0 ( 0 )
 Added by Phuoc-Tai Nguyen
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Let $Omega subset {mathbb R}^N$ ($N geq 3$) be a $C^2$ bounded domain and $F subset partial Omega$ be a $C^2$ submanifold of dimension $0 leq k leq N-2$. Put $delta_F(x)=dist(x,F)$, $V=delta_F^{-2}$ in $Omega$ and $L_{gamma V}=Delta + gamma V$. Denote by $C_H(V)$ the Hardy constant relative to $V$ in $Omega$. We study positive solutions of equations (LE) $-L_{gamma V} u = 0$ and (NE) $-L_{gamma V} u+ f(u) = 0$ in $Omega$ when $gamma < C_H(V)$ and $f in C({mathbb R})$ is an odd, monotone increasing function. We establish the existence of a normalized boundary trace for positive solutions of (LE) - first studied by Marcus and Nguyen for the case $F=partial Omega$ - and employ it to investigate the behavior of subsolutions and super solutions of (LE) at the boundary. Using these results we study boundary value problems for (NE) and derive a-priori estimates. Finally we discuss subcriticality of (NE) at boundary points of $Omega$ and establish existence and stability results when the data is concentrated on the set of subcritical points.



rate research

Read More

In this paper, we consider an optimal bilinear control problem for the nonlinear Schr{o}dinger equations with singular potentials. We show well-posedness of the problem and existence of an optimal control. In addition, the first order optimality system is rigorously derived. Our results generalize the ones in cite{Sp} in several aspects.
By virtue of numerical arguments we study a bifurcation phenomenon occurring for a class of minimization problems associated with the quasi-linear Schrodinger equation.
We prove well-posedness and regularity results for elliptic boundary value problems on certain domains with a smooth set of singular points. Our class of domains contains the class of domains with isolated oscillating conical singularities, and hence they generalize the classical results of Kondratiev on domains with conical singularities. The proofs are based on conformal changes of metric, on the differential geometry of manifolds with boundary and bounded geometry, and on our earlier results on manifolds with boundary and bounded geometry.
The semi-geostrophic system is widely used in the modelling of large-scale atmospheric flows. In this paper, we prove existence of solutions of the incompressible semi-geostrophic equations in a fully three-dimensional domain with a free upper boundary condition. We show that, using methods similar to those introduced in the pioneering work of Benamou and Brenier, who analysed the same system but with a rigid boundary condition, we can prove the existence of solutions for the incompressible free boundary problem. The proof is based on optimal transport results as well as the analysis of Hamiltonian ODEs in spaces of probability measures given by Ambrosio and Gangbo. We also show how these techniques can be modified to yield the same result also for the compressible version of the system.
We study the large time behaviour of the solution of linear dispersive partial differential equations posed on a finite interval, when at least one of the prescribed boundary conditions is time periodic. We use the Q equation approach, pioneered in Fokas & Lenells 2012 and applied to linear problems on the half-line in Fokas & van der Weele 2021, to characterise necessary conditions for the solution of such problem to be periodic, at least in an asymptotic sense. We then fully describe the periodicity properties of the solution in three important illustrative examples, recovering known results for the second-order cases and establishing new results for the third order case.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا