No Arabic abstract
Uncertainties in atomic models will introduce noticeable additional systematics in calculating the flux of weak dielectronic recombination (DR) satellite lines, affecting the detection and flux measurements of other weak spectral lines. One important example is the Ar XVII He-beta DR, which is expected to be present in emission from the hot intracluster medium (ICM) of galaxy clusters and could impact measurements of the flux of the 3.5 keV line that has been suggested as a secondary emission from a dark matter interaction. We perform a set of experiments using the Lawrence Livermore National Laboratorys electron beam ion trap (EBIT-I) and the X-Ray Spectrometer quantum calorimeter (XRS/EBIT), to test the Ar XVII He-beta DR origin of the 3.5 keV line. We measured the X-ray emission following resonant DR onto helium-like and lithium-like Argon using EBIT-Is Maxwellian simulator mode at a simulated electron temperature of Te=1.74 keV. The measured flux of the Ar XVII He-beta DR lined is too weak to account for the flux in the 3.5 keV line assuming reasonable plasma parameters. We, therefore, rule out Ar XVII He-beta DR as a significant contributor to the 3.5 keV line. A comprehensive comparison between the atomic theory and the EBIT experiment results is also provided.
Rich soft X-ray emission lines of highly charged silicon ions (Si VI--Si XII) were observed by irradiating an ultra-intense laser pulse with width of 200 fs and energy of $sim$90 mJ on the solid silicon target. The high resolution spectra of highly charged silicon ions with full-width at half maximum (FWHM) of $sim$0.3--0.4AA is analyzed in wavelength range of 40--90 AA . The wavelengths of 53 prominent lines are determined with statistical uncertainties being up to 0.005 AA . Collisional-radiative models were constructed for Si VI -- Si XII ions, which satisfactorily reproduces the experimental spectra, and helps the line identification. Calculations at different electron densities reveal that the spectra of dense plasmas are more complicate than the spectra of thin plasmas. A comparison with the Kelly database reveals a good agreement for most peak intensities, and differences for a few emission lines.
We present Hitomi observations of N132D, a young, X-ray bright, O-rich core-collapse supernova remnant in the Large Magellanic Cloud (LMC). Despite a very short observation of only 3.7 ks, the Soft X-ray Spectrometer (SXS) easily detects the line complexes of highly ionized S K and Fe K with 16-17 counts in each. The Fe feature is measured for the first time at high spectral resolution. Based on the plausible assumption that the Fe K emission is dominated by He-like ions, we find that the material responsible for this Fe emission is highly redshifted at ~800 km/s compared to the local LMC interstellar medium (ISM), with a 90% credible interval of 50-1500 km/s if a weakly informative prior is placed on possible line broadening. This indicates (1) that the Fe emission arises from the supernova ejecta, and (2) that these ejecta are highly asymmetric, since no blue-shifted component is found. The S K velocity is consistent with the local LMC ISM, and is likely from swept-up ISM material. These results are consistent with spatial mapping that shows the He-like Fe concentrated in the interior of the remnant and the S tracing the outer shell. The results also show that even with a very small number of counts, direct velocity measurements from Doppler-shifted lines detected in extended objects like supernova remnants are now possible. Thanks to the very low SXS background of ~1 event per spectral resolution element per 100 ks, such results are obtainable during short pointed or slew observations with similar instruments. This highlights the power of high-spectral-resolution imaging observations, and demonstrates the new window that has been opened with Hitomi and will be greatly widened with future missions such as the X-ray Astronomy Recovery Mission (XARM) and Athena.
We have built a vacuum double crystal spectrometer, which coupled to an electron-cyclotron resonance ion source, allows to measure low-energy x-ray transitions in highly-charged ions with accuracies of the order of a few parts per million. We describe in detail the instrument and its performances. Furthermore, we present a few spectra of transitions in Ar$^{14+}$, Ar$^{15+}$ and Ar$^{16+}$. We have developed an ab initio simulation code that allows us to obtain accurate line profiles. It can reproduce experimental spectra with unprecedented accuracy. The quality of the profiles allows the direct determination of line width.
A detailed level collisional-radiative model of the E1 transition spectrum of Ca-like W$^{54+}$ ion has been constructed. All the necessary atomic data has been calculated by relativistic configuration interaction (RCI) method with the implementation of Flexible Atomic Code (FAC). The results are in reasonable agreement with the available experimental and previous theoretical data. The synthetic spectrum has explained the EBIT spectrum in 29.5-32.5 AA ,, while several new strong transitions has been proposed to be observed in 18.5-19.6 AA , for the future EBIT experiment with electron density $n_e$ = $10^{12}$ cm$^{-3}$ and electron beam energy $E_e$ = 18.2 keV.
The current status of bound state quantum electrodynamics calculations of transition energies for few-electron ions is reviewed. Evaluation of one and two body QED correction is presented, as well as methods to evaluate many-body effects that cannot beevaluated with present-day QED calculations. Experimental methods, their evolution over time, as well as progress in accuracy are presented. A detailed, quantitative, comparison between theory and experiment is presented for transition energies in few-electron ions. In particular the impact of the nuclear size correction on the quality of QED tests as a function of the atomic number is discussed.The cases of hyperfine transition energies and of bound-electron Land{e} $g$-factor are also considered.