Do you want to publish a course? Click here

Analytic growth rate of gravitational instability in self-gravitating planar polytropes

276   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gravitational instability is a key process that may lead to fragmentation of gaseous structures (sheets, filaments, haloes) in astrophysics and cosmology. We introduce here a method to derive analytic expressions for the growth rate of gravitational instability in a plane stratified medium. We consider a pressure-confined, static, self-gravitating fluid of arbitrary polytropic exponent, with both free and rigid boundary conditions. The method we detail here can naturally be generalised to analyse the stability of more complex systems. Our analytical results are in excellent agreement with numerical resolutions.



rate research

Read More

We present a self-gravitating, analytic and globally regular Skyrmion solution of the Einstein-Skyrme system with winding number w = 1, in presence of a cosmological constant. The static spacetime metric is the direct product RxS3 and the Skyrmion is the self-gravitating generalization of the static hedgehog solution of Manton and Ruback with unit topological charge. This solution can be promoted to a dynamical one in which the spacetime is a cosmology of the Bianchi type-IX with time-dependent scale and squashing coefficients. Remarkably, the Skyrme equations are still identically satisfied for all values of these parameters. Thus, the complete set of field equations for the Einstein-Skyrme-Lambda system in the topological sector reduces to a pair of coupled, autonomous, nonlinear differential equations for the scale factor and a squashing coefficient. These equations admit analytic bouncing cosmological solutions in which the universe contracts to a minimum non-vanishing size, and then expands. A non-trivial byproduct of this solution is that a minor modification of the construction gives rise to a family of stationary, regular configurations in General Relativity with negative cosmological constant supported by an SU(2) nonlinear sigma model. These solutions represent traversable AdS wormholes with NUT parameter in which the only exotic matter required for their construction is a negative cosmological constant.
We investigate the spatially-resolved morphology of galaxies in the early Universe. We consider a typical redshift z = 6 Lyman Break galaxy, Althaea from the SERRA hydrodynamical simulations. We create mock rest-frame ultraviolet, optical, and far-infrared observations, and perform a two-dimensional morphological analysis to de-blend the galaxy disk from substructures (merging satellites or star-forming regions). We find that the [CII]158um emitting region has an effective radius 1.5 - 2.5 times larger than the optical one, consistent with recent observations. This [CII] halo in our simulated galaxy arises as the joint effect of stellar outflows and carbon photoionization by the galaxy UV field, rather than from the emission of unresolved nearby satellites. At the typical angular resolution of current observations (> 0.15) only merging satellites can be detected; detection of star-forming regions requires resolutions of < 0.05. The [CII]-detected satellite has a 2.5 kpc projected distance from the galaxy disk, whereas the star-forming regions are embedded in the disk itself (distance < 1 kpc). This suggests that multi-component systems reported in the literature, which have separations > 2 kpc, are merging satellites, rather than galactic substructures. Finally, the star-forming regions found in our mock maps follow the local L[CII] - SFR_UV relation of galaxy disks, although sampling the low-luminosity, low-SFR tail of the distribution. We show that future JWST observations, bridging UV and [CII] datasets, will be exceptionally suited to characterize galaxy substructures thanks to their exquisite spatial resolution and sensitivity to both low-metallicity and dust-obscured regions that are bright at infrared wavelengths.
It is well known that the Klein Gordon (KG) equation $Box Phi + m^2Phi=0$ has tachyonic unstable modes on large scales ($k^2<vert m vert^2$) for $m^2<m_{cr}^2=0$ in a flat Minkowski spacetime with maximum growth rate $Omega_{F}(m)= vert m vert$ achieved at $k=0$. We investigate these instabilities in a Reissner-Nordstrom-deSitter (RN-dS) background spacetime with mass $M$, charge $Q$, cosmological constant $Lambda>0$ and multiple horizons. By solving the KG equation in the range between the event and cosmological horizons, using tortoise coordinates $r_*$, we identify the bound states of the emerging Schrodinger-like Regge-Wheeler equation corresponding to instabilities. We find that the critical value $m_{cr}$ such that for $m^2<m_{cr}^2$ bound states and instabilities appear, remains equal to the flat space value $m_{cr}=0$ for all values of background metric parameters despite the locally negative nature of the Regge-Wheeler potential for $m=0$. However, the growth rate $Omega$ of tachyonic instabilities for $m^2<0$ gets significantly reduced compared to the flat case for all parameter values of the background metric ($Omega(Q/M,M^2 Lambda, mM)< vert m vert$). This increased lifetime of tachyonic instabilities is maximal in the case of a near extreme Schwarzschild-deSitter (SdS) black hole where $Q=0$ and the cosmological horizon is nearly equal to the event horizon ($xi equiv 9M^2 Lambda simeq 1$). The physical reason for this delay of instability growth appears to be the existence of a cosmological horizon that tends to narrow the negative range of the Regge-Wheeler potential in tortoise coordinates.
The long timescale evolution of a self-gravitating system is generically driven by two-body encounters. In many cases, the motion of the particles is primarily governed by the mean field potential. When this potential is integrable, particles move on nearly fixed orbits, which can be described in terms of angle-action variables. The mean field potential drives fast orbital motions (angles) whose associated orbits (actions) are adiabatically conserved on short dynamical timescales. The long-term stochastic evolution of the actions is driven by the potential fluctuations around the mean field and in particular by resonant two-body encounters, for which the angular frequencies of two particles are in resonance. We show that the stochastic gravitational fluctuations acting on the particles can generically be described by a correlated Gaussian noise. Using this approach, the so-called $eta$-formalism, we derive a diffusion equation for the actions in the test particle limit. We show that in the appropriate limits, this diffusion equation is equivalent to the inhomogeneous Balescu-Lenard and Landau equations. This approach provides a new view of the resonant diffusion processes associated with long-term orbital distortions. Finally, by investigating the example of the Hamiltonian Mean Field Model, we show how the present method generically allows for alternative calculations of the long-term diffusion coefficients in inhomogeneous systems.
We address the question whether a medium featuring $p + rho = 0$, dubbed $Lambda$- medium, has to be necessarily a cosmological constant. By using effective field theory, we show that this is not the case for a class of media comprising perfect fluids, solids and special super solids, providing an explicit construction. The low energy excitations are non trivial and lensing, the growth of large scale structures can be used to clearly distinguish $Lambda$-media from a cosmological constant.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا