This work considers the use of Total variation (TV) minimization in the recovery of a given gradient sparse vector from Gaussian linear measurements. It has been shown in recent studies that there exist a sharp phase transition behavior in TV minimization in asymptotic regimes. The phase transition curve specifies the boundary of success and failure of TV minimization for large number of measurements. It is a challenging task to obtain a theoretical bound that reflects this curve. In this work, we present a novel upper-bound that suitably approximates this curve and is asymptotically sharp. Numerical results show that our bound is closer to the empirical TV phase transition curve than the previously known bound obtained by Kabanava.